20 research outputs found

    Stability of the Malvinas Current

    Full text link
    Deterministic and probabilistic tools from nonlinear dynamics are used to assess enduring near-surface Lagrangian aspects of the Malvinas Current. The deterministic tools are applied on a multi-year record of velocities derived from satellite altimetry data, revealing a resilient cross-stream transport barrier. This is composed of shearless-parabolic Lagrangian coherent structures (LCS), which, extracted over sliding time windows along the multi-year altimetry-derived velocity record, lie in near coincidental position. The probabilistic tools are applied on a large collection of historical satellite-tracked drifter trajectories, revealing weakly communicating flow regions on either side of the altimetry-derived barrier. Shearless-parabolic LCS are detected for the first time from altimetry data, and their significance is supported on satellite-derived ocean color data, which reveal shapes that quite closely resemble the peculiar V shapes, dubbed `chevrons,' that have recently confirmed the presence of similar LCS in the atmosphere of Jupiter. Finally, using in-situ velocity and hydrographic data, conditions for symmetric stability are found to be satisfied, suggesting a duality between Lagrangian and Eulerian stability for the Malvinas Current.Comment: Submitted to Scientific Report

    Variability of the Deepwater Horizon Surface Oil Spill Extent and Its Relationship to Varying Ocean Currents and Extreme Weather Conditions

    No full text
    Satellite observations and their derived products played a key role during the Deepwater Horizon oil spill monitoring efforts in the Gulf of Mexico in April–July 2010. These observations were sometimes the only source of synoptic information available to monitor and analyse several critical parameters on a daily basis. These products also complemented in situ observations and provided data to assimilate into or validate model. The ocean surface dynamics in the Gulf of Mexico are dominated by strong seasonal cycles in surface temperature and mixing due to convective and storm energy, and by major currents that include the Loop Current and its associated rings. Shelf processes are also strongly influenced by seasonal river discharge, winds, and storms. Satellite observations were used to determine that the Loop Current exhibited a very northern excursion (to approximately 28∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}∘^{\circ }\end{document}N) during the month of May, placing the core of this current and of the ring that it later shed at approximately 150 km south of the oil spill site. Knowledge gained about the Gulf of Mexico since the 1980s using a wide range of satellite observations helped understand the timing and process of separation of an anticyclonic ring from the Loop Current during this time. The surface extent of the oil spill varied largely based upon several factors, such as the rate of oil flowing from the well, clean up and recovery efforts, and biological, chemical, and physical processes. Satellite observations from active and passive radars, as well as from visible and infrared sensors were used to determine the surface extent of the oil spill. Results indicate that the maximum and total cumulative areal extent were approximately 45 ×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}×\times \end{document} 103\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}3^3\end{document} km2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}2^2\end{document} and 130 ×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}×\times \end{document} 103\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}3^3\end{document} km2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}2^2\end{document}, respectively. The largest increase of surface oil occurred between April 22 and May 22, at an average rate of 1.3 ×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}×\times \end{document} 103\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}3^3\end{document} km2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}2^2\end{document} per day. The largest decrease in the extent of surface oil started on June 26, at an average rate of 4.4 ×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}×\times \end{document} 103\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}3^3\end{document} km2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}2^2\end{document} per day. Surface oil areas larger than approximately 40 ×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}×\times \end{document} 103\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}3^3\end{document} km2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}2^2\end{document} occurred during several periods between late May and the end of June. The southernmost surface oil extent reached approximately 85∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}∘^{\circ }\end{document}W 27∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}∘^{\circ }\end{document}N during the beginning of June. Results obtained indicate that surface currents may have partly controlled the southern and eastern extent of the surface oil during May and June, while intense southeast winds associated with Hurricane Alex caused a reduction of the surface oil extent at the end of June and beginning of July, as oil was driven onshore and mixed underwater. Given the suite of factors determining the variability of the oil spill extent at ocean surface, work presented here shows the importance of data analyses to compare against assessments made to evaluate numerical models

    Flow Coherence: Distinguishing Cause from Effect

    No full text
    The geodesic transport theory unveils the especial fluid trajectory sets, referred to as Lagrangian Coherent Structures (LCS), that cause a flow to organize into ordered patterns. This is illustrated through the analysis of an oceanic flow dataset and contrasted with the tendency of a widely used flow diagnostic to carry coherence imprints as an effect of the influence of LCS on neighboring fluid trajectories

    Evaluating the Effectiveness of Fishery Closures for Deep Oil Spills Using a Four-Dimensional Model

    No full text
    During the Deepwater Horizon (DWH) oil spill, extensive areas of the Gulf of Mexico (GoM) were closed for fishing due to the risk of seafood contamination and fishers’ health. The closures were determined daily according to the estimated extent of the spill relying mainly on satellite imaging. These closures were largely limited to the northern GoM. Yet, evidence from the field indicates a presence of oil beyond the closures, in some cases at toxic concentrations. With the advancement of oil transport modeling, together with the availability of new in situ data, we examine the 4D extent of the DWH spill, along with the effectiveness of the fishery closures in capturing the oil spill extent. We use the oil application of the Connectivity Modeling System (oil-CMS), cross-checked against in situ BP Gulf Science Data (GSD) and other published studies. The oil-CMS indicates that DWH extended well beyond the satellite footprint and fishery closures, with the closures capturing only ~55% of the total extent of the spill. With an increasing global shift toward deep-sea drilling, our findings are important for the safety of coastal communities and marine ecosystems around deep-sea drilling areas
    corecore