70 research outputs found
Granular Collapse as a Percolation Transition
Inelastic collapse is found in a two-dimensional system of inelastic hard
disks confined between two walls which act as an energy source. As the
coefficient of restitution is lowered, there is a transition between a state
containing small collapsed clusters and a state dominated by a large collapsed
cluster. The transition is analogous to that of a percolation transition. At
the transition the number of clusters n_s of size s scales as with .Comment: 10 pages revtex, 5 figures, accepted by Phys Rev E many changes and
corrections from previous submissio
Shocks in supersonic sand
We measure time-averaged velocity, density, and temperature fields for steady
granular flow past a wedge and calculate a speed of granular pressure
disturbances (sound speed) equal to 10% of the flow speed. The flow is
supersonic, forming shocks nearly identical to those in a supersonic gas.
Molecular dynamics simulations of Newton's laws and Monte Carlo simulations of
the Boltzmann equation yield fields in quantitative agreement with experiment.
A numerical solution of Navier-Stokes-like equations agrees with a molecular
dynamics simulation for experimental conditions excluding wall friction.Comment: 4 pages, 5 figure
Clustering, Order, and Collapse in a Driven Granular Monolayer
Steady state dynamics of clustering, long range order, and inelastic collapse
are experimentally observed in vertically shaken granular monolayers. At large
vibration amplitudes, particle correlations show only short range order like
equilibrium 2D hard sphere gases. Lowering the amplitude "cools" the system,
resulting in a dramatic increase in correlations leading either to clustering
or an ordered state. Further cooling forms a collapse: a condensate of
motionless balls co-existing with a less dense gas. Measured velocity
distributions are non-Gaussian, showing nearly exponential tails.Comment: 9 pages of text in Revtex, 5 figures; references added, minor
modifications Paper accepted to Phys Rev Letters. Tentatively scheduled for
Nov. 9, 199
Transport Coefficients for Granular Media from Molecular Dynamics Simulations
Under many conditions, macroscopic grains flow like a fluid; kinetic theory
pred icts continuum equations of motion for this granular fluid. In order to
test the theory, we perform event driven molecular simulations of a
two-dimensional gas of inelastic hard disks, driven by contact with a heat
bath. Even for strong dissipation, high densities, and small numbers of
particles, we find that continuum theory describes the system well. With a bath
that heats the gas homogeneously, strong velocity correlations produce a
slightly smaller energy loss due to inelastic collisions than that predicted by
kinetic theory. With an inhomogeneous heat bath, thermal or velocity gradients
are induced. Determination of the resulting fluxes allows calculation of the
thermal conductivity and shear viscosity, which are compared to the predictions
of granular kinetic theory, and which can be used in continuum modeling of
granular flows. The shear viscosity is close to the prediction of kinetic
theory, while the thermal conductivity can be overestimated by a factor of 2;
in each case, transport is lowered with increasing inelasticity.Comment: 14 pages, 17 figures, 39 references, submitted to PRE feb 199
Dynamics of an Intruder in Dense Granular Fluids
We investigate the dynamics of an intruder pulled by a constant force in a
dense two-dimensional granular fluid by means of event-driven molecular
dynamics simulations. In a first step, we show how a propagating momentum front
develops and compactifies the system when reflected by the boundaries. To be
closer to recent experiments \cite{candelier2010journey,candelier2009creep}, we
then add a frictional force acting on each particle, proportional to the
particle's velocity. We show how to implement frictional motion in an
event-driven simulation. This allows us to carry out extensive numerical
simulations aiming at the dependence of the intruder's velocity on packing
fraction and pulling force. We identify a linear relation for small and a
nonlinear regime for high pulling forces and investigate the dependence of
these regimes on granular temperature
The Physics of the Colloidal Glass Transition
As one increases the concentration of a colloidal suspension, the system
exhibits a dramatic increase in viscosity. Structurally, the system resembles a
liquid, yet motions within the suspension are slow enough that it can be
considered essentially frozen. This kinetic arrest is the colloidal glass
transition. For several decades, colloids have served as a valuable model
system for understanding the glass transition in molecular systems. The spatial
and temporal scales involved allow these systems to be studied by a wide
variety of experimental techniques. The focus of this review is the current
state of understanding of the colloidal glass transition. A brief introduction
is given to important experimental techniques used to study the glass
transition in colloids. We describe features of colloidal systems near and in
glassy states, including tremendous increases in viscosity and relaxation
times, dynamical heterogeneity, and ageing, among others. We also compare and
contrast the glass transition in colloids to that in molecular liquids. Other
glassy systems are briefly discussed, as well as recently developed synthesis
techniques that will keep these systems rich with interesting physics for years
to come.Comment: 56 pages, 18 figures, Revie
Photodynamic Antimicrobial Chemotherapy in Aquaculture: Photoinactivation Studies of Vibrio fischeri
BACKGROUND: Photodynamic antimicrobial chemotherapy (PACT) combines light, a light-absorbing molecule that initiates a photochemical or photophysical reaction, and oxygen. The combined action of these three components originates reactive oxygen species that lead to microorganisms' destruction. The aim was to evaluate the efficiency of PACT on Vibrio fischeri: 1) with buffer solution, varying temperature, pH, salinity and oxygen concentration values; 2) with aquaculture water, to reproduce photoinactivation (PI) conditions in situ. METHODOLOGY/PRINCIPAL FINDINGS: To monitor the PI kinetics, the bioluminescence of V. fischeri was measured during the experiments. A tricationic meso-substituted porphyrin (Tri-Py(+)-Me-PF) was used as photosensitizer (5 µM in the studies with buffer solution and 10-50 µM in the studies with aquaculture water); artificial white light (4 mW cm(-2)) and solar irradiation (40 mW cm(-2)) were used as light sources; and the bacterial concentration used for all experiments was ≈10(7) CFU mL(-1) (corresponding to a bioluminescence level of 10(5) relative light units--RLU). The variations in pH (6.5-8.5), temperature (10-25°C), salinity (20-40 g L(-1)) and oxygen concentration did not significantly affect the PI of V. fischeri, once in all tested conditions the bioluminescent signal decreased to the detection limit of the method (≈7 log reduction). The assays using aquaculture water showed that the efficiency of the process is affected by the suspended matter. Total PI of V. fischeri in aquaculture water was achieved under solar light in the presence of 20 µM of Tri-Py(+)-Me-PF. CONCLUSIONS/SIGNIFICANCE: If PACT is to be used in environmental applications, the matrix containing target microbial communities should be previously characterized in order to establish an efficient protocol having into account the photosensitizer concentration, the light source and the total light dose delivered. The possibility of using solar light in PACT to treat aquaculture water makes this technology cost-effective and attractive
- …