3 research outputs found
Electronic Coherence Dephasing in Excitonic Molecular Complexes: Role of Markov and Secular Approximations
We compare four different types of equations of motion for reduced density
matrix of a system of molecular excitons interacting with thermodynamic bath.
All four equations are of second order in the linear system-bath interaction
Hamiltonian, with different approximations applied in their derivation. In
particular we compare time-nonlocal equations obtained from so-called
Nakajima-Zwanzig identity and the time-local equations resulting from the
partial ordering prescription of the cummulant expansion. In each of these
equations we alternatively apply secular approximation to decouple population
and coherence dynamics from each other. We focus on the dynamics of intraband
electronic coherences of the excitonic system which can be traced by coherent
two-dimensional spectroscopy. We discuss the applicability of the four
relaxation theories to simulations of population and coherence dynamics, and
identify features of the two-dimensional coherent spectrum that allow us to
distinguish time-nonlocal effects.Comment: 14 pages, 8 figure
Exciton Dynamics in Photosynthetic Complexes: Excitation by Coherent and Incoherent Light
In this paper we consider dynamics of a molecular system subjected to
external pumping by a light source. Within a completely quantum mechanical
treatment, we derive a general formula, which enables to asses effects of
different light properties on the photo-induced dynamics of a molecular system.
We show that once the properties of light are known in terms of certain
two-point correlation function, the only information needed to reconstruct the
system dynamics is the reduced evolution superoperator. The later quantity is
in principle accessible through ultrafast non-linear spectroscopy. Considering
a direct excitation of a small molecular antenna by incoherent light we find
that excitation of coherences is possible due to overlap of homogeneous line
shapes associated with different excitonic states. In Markov and secular
approximations, the amount of coherence is significant only under fast
relaxation, and both the populations and coherences between exciton states
become static at long time. We also study the case when the excitation of a
photosynthetic complex is mediated by a mesoscopic system. We find that such
case can be treated by the same formalism with a special correlation function
characterizing ultrafast fluctuations of the mesoscopic system. We discuss
bacterial chlorosom as an example of such a mesoscopic mediator and propose
that the properties of energy transferring chromophore-protein complexes might
be specially tuned for the fluctuation properties of their associated antennae.Comment: 12 page