25 research outputs found
Hypofractionated Stereotactic Radiotherapy for Non-breast or Prostate Cancer Oligometastases: A Tail of Survival Beyond 10 Years
Purpose and Objective(s): We sought to analyze the long-term follow-up of patients treated with hypofractionated, stereotactic radiotherapy (HSRT) for oligometastases from malignancies other than breast or prostate cancer.Materials and Methods: From 2001 to 2006, 82 cancer patients with 1–5 radiographically apparent metastatic lesions (in 1–3 organs) from primary sites other than breast or prostate cancer, were enrolled on a prospective study of HSRT. Freedom from widespread metastasis (FFWM) was defined from date of enrollment until death, an event (i.e., widespread distant metastasis not amenable to local therapy), or last radiographic study. Local recurrence was scored as an event if pathologically confirmed or if a treated lesion increased by ≥20% using RECIST criteria. Prognostic variables were assessed using Cox regression analysis.Results: The mean age was 61 ± 11 years, with a male to female ratio of 46:36. The most common metastatic sites were liver (50%), lung (48%), thoracic lymph nodes (18%), and bone (5%). Sixty-one patients (74%) had 1 involved organ and 18 (22%) had 1 lesion treated. The preferred dose-fractionation scheduled was 50 Gy in 10 fractions (52 patients). The median follow-up was 1.7 years. Eleven patients lived >5 years, and 6 lived >10 years. The 5-year OS, PFS, FFWM, and LC rates were 13.4, 7.3, 18.3, and 63.4%, and the 10-years OS, PFS, FFWM, and patient LC rates were 7.3, 6.1, 13.4, and 62.2%, respectively. A greater net gross tumor volume (GTV) was significantly adverse for OS (p < 0.01) and LC (p < 0.01). For FFWM, net GTV was not a significant factor (p = 0.14). Four patients remain alive at >13 years from enrollment and treatment, without evidence of active disease.Conclusion: A small subset of select non-breast, non-prostate cancer patients with limited metastasis treated with HSRT are long-term survivors. Net GTV is a significant factor for tumor control and survival. Further research is needed to help better select patients most likely to benefit from local therapy for metastatic disease
Intraoperative radiation therapy for early-stage breast cancer: a single-institution experience
Background: To assess outcomes and toxicity after low-energy intraoperative radiotherapy (IORT) for early-stage breast cancer (ESBC).
Materials and methods: We reviewed patients with unilateral ESBC treated with breast-conserving surgery and 50-kV IORT at our institution. Patients were prescribed 20 Gy to the surface of the spherical applicator, fitted to the surgical cavity during surgery. Patients who did not meet institutional guidelines for IORT alone on final pathology were recommended adjuvant treatment, including additional surgery and/or external-beam radiation therapy (EBRT). We analyzed ipsilateral breast tumor recurrence, overall survival, recurrence-free survival and toxicity.
Results: Among 201 patients (median follow-up, 5.1 years; median age, 67 years), 88% were Her2 negative and ER positive and/or PR positive, 98% had invasive ductal carcinoma, 87% had grade 1 or 2, and 95% had clinical T1 disease. Most had pathological stage T1 (93%) N0 (95%) disease. Mean IORT applicator dose at 1-cm depth was 6.3 Gy. Post-IORT treatment included additional surgery, 10%; EBRT, 11%; adjuvant chemotherapy, 9%; and adjuvant hormonal therapy, 74%. Median total EBRT dose was 42.4 (range, 40.05-63) Gy and median dose per fraction was 2.65 Gy. At 5 years, the cumulative incidence of ipsilateral breast tumor recurrence was 2.7%, the overall survival rate was 95% with no breast cancer-related deaths, and the recurrence-free survival rate was 96%. For patients who were deemed unsuitable for postoperative IORT alone and did not receive recommended risk-adapted EBRT, the IBTR rate was 4.7% versus 1.7% (p = 0.23) for patients who were either suitable for IORT alone or unsuitable and received adjuvant EBRT. Cosmetic toxicity data was available for 83%, with 7% experiencing grade 3 breast toxicity and no grade 4–5 toxicity.
Conclusions: IORT for select patients with ESBC results in acceptable outcomes in regard to ipsilateral breast tumor recurrence and toxicity
Normal tissue toxicity after small field hypofractionated stereotactic body radiation
Stereotactic body radiation (SBRT) is an emerging tool in radiation oncology in which the targeting accuracy is improved via the detection and processing of a three-dimensional coordinate system that is aligned to the target. With improved targeting accuracy, SBRT allows for the minimization of normal tissue volume exposed to high radiation dose as well as the escalation of fractional dose delivery. The goal of SBRT is to minimize toxicity while maximizing tumor control. This review will discuss the basic principles of SBRT, the radiobiology of hypofractionated radiation and the outcome from published clinical trials of SBRT, with a focus on late toxicity after SBRT. While clinical data has shown SBRT to be safe in most circumstances, more data is needed to refine the ideal dose-volume metrics
Recommended from our members
Schedule-dependent pulsed paclitaxel radiosensitization for thoracic malignancy
Protein Kinase A RI-α Predicts for Prostate Cancer Outcome: Analysis of Radiation Therapy Oncology Group Trial 86-10
The RI-α regulatory subunit of protein kinase A type 1 (PKA) is constitutively overexpressed in human cancer cell lines and is associated with active cell growth and neoplastic transformation. This report examined the association between PKA expression and the endpoints of biochemical failure (BF), local failure (LF), distant metastasis (DM), cause-specific mortality (CSM), and overall mortality in men treated with radiotherapy, with or without short-term androgen deprivation in Radiation Therapy Oncology Group trial 86-10.
Pretreatment archival diagnostic tissue samples from 80 patients were stained for PKA by immunohistochemical methods from a parent cohort of 456 cases. PKA intensity was scored manually and by image analysis. The Cox proportional hazards model for overall mortality and Fine and Gray's regression models for CSM, DM, LF and BF were then applied to determine the relationship of PKA expression to the endpoints.
The pretreatment characteristics of the missing and determined PKA groups were not significantly different. On univariate analyses, a high PKA staining intensity was associated with BF (image analysis, continuous variable,
p = 0.022), LF (image analysis, dichotomized variable,
p = 0.011), CSM (manual analysis,
p = 0.037; image analysis, continuous,
p = 0.014), and DM (manual analysis,
p = 0.029). On multivariate analyses, the relationships to BF (image analysis, continuous,
p = 0.03), LF (image analysis, dichotomized,
p = 0.002), and DM remained significant (manual analysis,
p = 0.018). In terms of CSM, a trend toward an association was seen (manual analysis,
p = 0.08; image analysis, continuous,
p = 0.09).
PKA overexpression was significantly related to patient outcome and is a potentially useful biomarker for identifying high-risk prostate cancer patients who might benefit from a PKA knockdown strategy