66 research outputs found
Resolution of Inventorship Disputes: Avoiding Litigation Through Early Evaluation
Published in cooperation with the American Bar Association Section of Dispute Resolutio
Towards the genetic architecture of seed lipid biosynthesis and accumulation in Arabidopsis thaliana
We report the quantitative genetic analysis of seed oil quality and quantity in six Arabidopsis thaliana recombinant inbred populations, in which the parent accessions were from diverse geographical origins, and were selected on the basis of variation for seed oil content and lipid composition. Although most of the biochemical steps involved in lipid biosynthesis are known and the key genes have been identified, the regulation of the processes that results in the final oil composition and total amount is not understood. By using physically anchored markers it was possible to compare results across populations. A total of 219 quantitative trait loci (QTLs) were identified, of which 81 were significant at P<0.001. Some of these colocalise with QTLs identified previously, but many novel QTLs were also identified. The results highlight the importance of studying traits in multiple populations, which will lead to a better understanding of the contribution that natural variation makes to the genetic architecture of a phenotype
The First Illumina-Based De Novo Transcriptome Sequencing and Analysis of Safflower Flowers
BACKGROUND: The safflower, Carthamus tinctorius L., is a worldwide oil crop, and its flowers, which have a high flavonoid content, are an important medicinal resource against cardiovascular disease in traditional medicine. Because the safflower has a large and complex genome, the development of its genomic resources has been delayed. Second-generation Illumina sequencing is now an efficient route for generating an enormous volume of sequences that can represent a large number of genes and their expression levels. METHODOLOGY/PRINCIPAL FINDINGS: To investigate the genes and pathways that might control flavonoids and other secondary metabolites in the safflower, we used Illumina sequencing to perform a de novo assembly of the safflower tubular flower tissue transcriptome. We obtained a total of 4.69 Gb in clean nucleotides comprising 52,119,104 clean sequencing reads, 195,320 contigs, and 120,778 unigenes. Based on similarity searches with known proteins, we annotated 70,342 of the unigenes (about 58% of the identified unigenes) with cut-off E-values of 10(-5). In total, 21,943 of the safflower unigenes were found to have COG classifications, and BLAST2GO assigned 26,332 of the unigenes to 1,754 GO term annotations. In addition, we assigned 30,203 of the unigenes to 121 KEGG pathways. When we focused on genes identified as contributing to flavonoid biosynthesis and the biosynthesis of unsaturated fatty acids, which are important pathways that control flower and seed quality, respectively, we found that these genes were fairly well conserved in the safflower genome compared to those of other plants. CONCLUSIONS/SIGNIFICANCE: Our study provides abundant genomic data for Carthamus tinctorius L. and offers comprehensive sequence resources for studying the safflower. We believe that these transcriptome datasets will serve as an important public information platform to accelerate studies of the safflower genome, and may help us define the mechanisms of flower tissue-specific and secondary metabolism in this non-model plant
Global Analysis of Gene Expression Profiles in Developing Physic Nut (Jatropha curcas L.) Seeds
Background: Physic nut (Jatropha curcas L.) is an oilseed plant species with high potential utility as a biofuel. Furthermore, following recent sequencing of its genome and the availability of expressed sequence tag (EST) libraries, it is a valuable model plant for studying carbon assimilation in endosperms of oilseed plants. There have been several transcriptomic analyses of developing physic nut seeds using ESTs, but they have provided limited information on the accumulation of stored resources in the seeds. Methodology/Principal Findings: We applied next-generation Illumina sequencing technology to analyze global gen
Arabidopsis FAD2 gene encodes the enzyme that is essential for polyunsaturated lipid synthesis.
The polyunsaturated fatty acids linoleate and alpha-linolenate are important membrane components and are the essential fatty acids of human nutrition. The major enzyme responsible for the synthesis of these compounds is the plant oleate desaturase of the endoplasmic reticulum, and its activity is controlled in Arabidopsis by the fatty acid desaturation 2 (fad2) locus. A fad2 allele was identified in a population of Arabidopsis in which mutations had been created by T-DNA insertions. Genomic DNA flanking the T-DNA was cloned by plasmid rescue and used to isolate cDNA and genomic clones of FAD2. A cDNA containing the entire FAD2 coding sequence was expressed in fad2 mutant plants and shown to complement the mutant fatty acid phenotype. The deduced amino acid sequence from the cDNA showed homology to other plant desaturases, and this confirmed that FAD2 is the structural gene for the desaturase. Gel blot analyses of FAD2 mRNA levels showed that the gene is expressed throughout the plant and suggest that transcript levels are in excess of the amount needed to account for oleate desaturation. Sequence analysis identified histidine-rich motifs that could contribute to an iron binding site in the cytoplasmic domain of the protein. Such a position would facilitate interaction between the desaturase and cytochrome b5, which is the direct source of electrons for the desaturation reaction, but would limit interaction of the active site with the fatty acyl substrate
- …