11 research outputs found

    PIV Measurement of a Flying Table Tennis Ball

    Get PDF
    AbstractThere are some reports that the Magnus force becomes negative at some situation in wind tunnel test. If so, there is possibility of a variety of curves using change of the direction of the Magnus force. PIV measurements of a flying table tennis ball were conducted to confirm whether a similar phenomenon was observed in real flight. A high-speed camera with a frame rate of 10k fps was used to capture the instantaneous flow field of the flying ball. The imaging region was 210mm × 210mm. The Reynolds number was approximately 6.5 × 104, which corresponds to a smash in table tennis. A coordinate transformation of the ball's fixed coordinate system captured the wake motion of non-rotating and rotating balls. In the non-rotating condition, the averaged velocity field of the ball was observed to be symmetric, whereas, in the rotating condition, it was asymmetric, which shows the Magnus effect. At spin parameter is 0.65, the Magnus force becomes zero to indicate the appearance of the negative Magnus force. These observations quantitatively agree with the wind tunnel test

    Introduction of 1-m MSBS in Tohoku University, New Device for Aerodynamics Measurements of the Sports Equipment

    No full text
    Support interference in wind tunnel testing is an unavoidable effect. It is difficult to measure the aerodynamic force acting on a model such as a ball owing to this effect [1]. A magnetic suspension and balance system (MSBS) suspends the model without any mechanical supports by using magnetic force, and at the same time, can measure the aerodynamic force acting on the model. The 1-m MSBS, located at the Institute of Fluid Science, Tohoku University, is the world’s largest MSBS. It has a 1-m-wide octagonal cross section. A sphere is taken as the experimental object, and the results of the aerodynamic force acting on it are presented. The diameter of the sphere is 150 mm, and its blockage ratio is 2.1%. The experiment was conducted at Reynolds numbers ranging from 0.5 × 105 to 4.7 × 105. It clearly shows the drag crisis at approximately Re = 3.7 × 105, and the fluctuation of the sphere abruptly increase around this region

    Effect of Camber on Badminton Shuttlecock

    No full text
    In this study, we conducted experimental measurements and computational analysis to investigate the aerodynamics of a shuttlecock, especially the effects of the camber of the shuttle’s skirt. The static aerodynamic coefficient from the experiment showed that the camber of the skirt was able to modify the aerodynamic characteristics. A positive camber, which indicates bending the blade toward the outside, causes a slight increase in lift and a decrease in drag. On the other hand, a negative camber causes an increase in drag, and an insensitive region in the lift and a pitching coefficient of approximately 0° was observed. This result leads to instability in the flight of the shuttlecock. The pressure distribution calculated using computational fluid dynamics revealed that each blade functions as a two-dimensional airfoil. However, in most cases, the blade is in stall condition due to an initial divergence angle of the skirt

    Measurement of aerodynamic force and moment acting on a javelin using a magnetic suspension and balance system

    No full text
    Abstract The rules governing the dimensions of the Javelin were substantially changed in 1986. It was considered that this new design guaranteed there was zero pitching moment at 0° angle of attack and that the pitching moment decreased (became negative) with increasing angle of attack. The objective of this study is to investigate if the pitching moment remains always negative (nose-down rotation). To measure accurate aerodynamic forces acting on a Javelin, the world’s largest 1 m magnetic suspension and balance system was used. The magnetic suspension and balance system was able to measure aerodynamic forces without support interference in the wind tunnel. In addition, computational fluid dynamics were carried out to estimate the pitching moment coefficients. It was found that the pitching moment coefficient of a commercially available Javelin becomes positive (nose-up rotation) at lower angles of attack, less than 12°. The pitching moment becomes positive if the upstream side of the center of gravity receives more inflow than the downstream side. This situation can be attained by, for example, increasing the thickness of the upstream side when compared with that of the downstream side

    Measurement of the Aerodynamic Forces Acting on a Non-Spinning Javelin Using an MSBS

    No full text
    Using the world’s largest magnetic suspension and balance system (MSBS) and a low-turbulence wind tunnel, we successfully measured the aerodynamic forces acting on a non-spinning women’s javelin. It was found that the drag and the lift increased as the angle of attack was increased up to 18°. The pitching moment increased for angles of attack up to about 9°, and then decreased, becoming negative above 12°, indicating nose-down rotation. We used a pseudo supporting rod to simulate a javelin attached to a support, as used in a conventional setup, and confirmed that this interferes with the javelin by creating differences between the aerodynamics forces acting on the javelin with and without the pseudo supporting rod
    corecore