34 research outputs found
FTY720 Reduces Lipid Accumulation by Upregulating ABCA1 through Liver X Receptor and Sphingosine Kinase 2 Signaling in Macrophages
Formation of foam cells as a result of excess lipid accumulation by macrophages is a pathological hallmark of atherosclerosis. Fingolimod (FTY720) is an immunosuppressive agent used in clinical settings for the treatment of multiple sclerosis and has been reported to inhibit atherosclerotic plaque development. However, little is known about the effect of FTY720 on lipid accumulation leading to foam cell formation. In this study, we investigated the effects of FTY720 on lipid accumulation in murine macrophages. FTY720 treatment reduced lipid droplet formation and increased the expression of ATP-binding cassette transporter A1 (ABCA1) in J774 mouse macrophages. FTY720 also enhanced the expression of liver X receptor (LXR) target genes such as FASN, APOE, and ABCG1. In addition, FTY720-induced upregulation of ABCA1 was abolished by knockdown of sphingosine kinase 2 (SphK2) expression. Furthermore, we found that FTY720 treatment induced histone H3 lysine 9 (H3K9) acetylation, which was lost in SphK2-knockdown cells. Taken together, FTY720 induces ABCA1 expression through SphK2-mediated acetylation of H3K9 and suppresses lipid accumulation in macrophages, which provides novel insights into the mechanisms of action of FTY720 on atherosclerosis
The Therapeutic Effect of Human Serum Albumin Dimer-Doxorubicin Complex against Human Pancreatic Tumors
Human serum albumin (HSA) is a versatile drug carrier with active tumor targeting capacity for an antitumor drug delivery system. Nanoparticle albumin-bound (nab)-technology, such as nab-paclitaxel (Abraxane®), has attracted significant interest in drug delivery research. Recently, we demonstrated that HSA dimer (HSA-d) possesses a higher tumor distribution than HSA monomer (HSA-m). Therefore, HSA-d is more suitable as a drug carrier for antitumor therapy and can improve nab technology. This study investigated the efficacy of HSA-d-doxorubicin (HSA-d-DOX) as next-generation nab technology for tumor treatment. DOX conjugated to HSA-d via a tunable pH-sensitive linker for the controlled release of DOX. Lyophilization did not affect the particle size of HSA-d-DOX or the release of DOX. HSA-d-DOX showed significantly higher cytotoxicity than HSA-m-DOX in vitro. In the SUIzo Tumor-2 (SUIT2) human pancreatic tumor subcutaneous inoculation model, HSA-d-DOX could significantly inhibit tumor growth without causing serious side effects, as compared to the HSA binding DOX prodrug, which utilized endogenous HSA as a nano-drug delivery system (DDS) carrier. These results indicate that HSA-d could function as a natural solubilizer of insoluble drugs and an active targeting carrier in intractable tumors with low vascular permeability, such as pancreatic tumors. In conclusion, HSA-d can be an effective drug carrier for the antitumor drug delivery system against human pancreatic tumors
Liposome co-incubation with cancer cells secreted exosomes (extracellular vesicles) with different proteins expressions and different uptake pathways
We recently showed that in vitro incubation of cells with liposomes of varying compositions can increase exosome secretion and increase the yield of harvested exosomes (extracellular vesicles, EVs). This might foster their potential therapeutic implementations. In the current study, we investigated the surface proteins and the uptake of the harvested exosomes (EVs) to see if the incubation of cells with liposomes would change the biological properties of these exosomes (EVs). Interestingly, exosomes (EVs) induced by solid cationic liposomes lacked some major exosome marker proteins such as CD9, flotillin-1, annexin-A2 and EGF, and subsequently had lower levels of cellular uptake upon re-incubation with donor cancer cells. However, exosomes (EVs) induced under normal condition and by fluid cationic liposomes, displayed the entire spectrum of proteins, and exhibited higher uptake by the donor cancer cells. Although endocytosis was the major uptake pathway of exosomes (EVs) by tumor cells, endocytosis could occur via more than one mechanism. Higher exosome uptake was observed in donor B16BL6 cells than in allogeneic C26 cells, indicating that donor cells might interact specifically with their exosomes (EVs) and avidly internalize them. Taken together, these results suggest a technique for controlling the characteristics of secreted exosomes (EVs) by incubating donor cancer cells with liposomes of varying physiochemical properties
Iowa Mutant Apolipoprotein A-I (ApoA-IIowa) Fibrils Target Lysosomes
The single amino acid mutation G26R in human apolipoprotein A-I (apoA-IIowa) is the first mutation that was associated with familial AApoA1 amyloidosis. The N-terminal fragments (amino acid residues 1–83) of apoA-I containing this mutation deposit as amyloid fibrils in patients’ tissues and organs, but the mechanisms of cellular degradation and cytotoxicity have not yet been clarified. In this study, we demonstrated degradation of apoA-IIowa fibrils via the autophagy-lysosomal pathway in human embryonic kidney 293 cells. ApoA-IIowa fibrils induced an increase in lysosomal pH and the cytosolic release of the toxic lysosomal protease cathepsin B. The mitochondrial dysfunction caused by apoA-IIowa fibrils depended on cathepsin B and was ameliorated by increasing the degradation of apoA-IIowa fibrils. Thus, although apoA-IIowa fibril transport to lysosomes and fibril degradation in lysosomes may have occurred, the presence of an excess number of apoA-IIowa fibrils, more than the lysosomes could degrade, may be detrimental to cells. Our results thus provide evidence that the target of apoA-IIowa fibrils is lysosomes, and we thereby gained a novel insight into the mechanism of AApoA1 amyloidosis
Specific degradation of CRABP-II via cIAP1-mediated ubiquitylation induced by hybrid molecules that crosslink cIAP1 and the target protein
AbstractManipulation of protein stability with small molecules is a challenge in the field of drug discovery. Here we show that cellular retinoic acid binding protein-II (CRABP-II) can be specifically degraded by a novel compound, SNIPER-4, consisting of (−)-N-[(2S,3R)-3-amino-2-hydroxy-4-phenyl-butyryl]-l-leucine methyl ester and all-trans retinoic acid that are ligands for cellular inhibitor of apoptosis protein 1 (cIAP1) and CRABP-II, respectively. Mechanistic analysis revealed that SNIPER-4 induces cIAP1-mediated ubiquitylation of CRABP-II, resulting in the proteasomal degradation. The protein knockdown strategy employing the structure of SNIPER-4 could be applicable to other target proteins
Distribution of Polysulfide in Human Biological Fluids and Their Association with Amylase and Sperm Activities
Intracellular polysulfide could regulate the redox balance via its anti-oxidant activity. However, the existence of polysulfide in biological fluids still remains unknown. Recently, we developed a quantitative analytical method for polysulfide and discovered that polysulfide exists in plasma and responds to oxidative stress. In this study, we confirmed the presence of polysulfide in other biological fluids, such as semen and nasal discharge. The levels of polysulfide in these biological fluids from healthy volunteers (n = 9) with identical characteristics were compared. Additionally, the circadian rhythm of plasma polysulfide was also investigated. The polysulfide levels detected from nasal discharge and seminal fluid were approximately 400 and 600 μM, respectively. No correlation could be found between plasma polysulfide and the polysulfide levels of tear, saliva, and nasal discharge. On the other hand, seminal polysulfide was positively correlated with plasma polysulfide, and almost all polysulfide contained in semen was found in seminal fluid. Intriguingly, saliva and seminal polysulfide strongly correlated with salivary amylase and sperm activities, respectively. These results provide a foundation for scientific breakthroughs in various research areas like infertility and the digestive system process
Effect of Phosphatidylserine and Cholesterol on Membrane-mediated Fibril Formation by the N-terminal Amyloidogenic Fragment of Apolipoprotein A-I
Here, we examined the effects of phosphatidylserine (PS) and cholesterol on the fibril-forming properties of the N-terminal 1‒83 fragment of an amyloidogenic G26R variant of apoA-I bound to small unilamellar vesicles. A thioflavin T fluorescence assay together with microscopic observations showed that PS significantly retards the nucleation step in fibril formation by apoA-I 1‒83/G26R, whereas cholesterol slightly enhances fibril formation. Circular dichroism analyses demonstrated that PS facilitates a structural transition from random coil to α-helix in apoA-I 1‒83/G26R with great stabilization of the α-helical structure upon lipid binding. Isothermal titration calorimetry measurements revealed that PS induces a marked increase in capacity for binding of apoA-I 1‒83/G26R to the membrane surface, perhaps due to electrostatic interactions of positively charged amino acids in apoA-I with PS. Such effects of PS to enhance lipid interactions and inhibit fibril formation of apoA-I were also observed for the amyloidogenic region-containing apoA-I 8‒33/G26R peptide. Fluorescence measurements using environment-sensitive probes indicated that PS induces a more solvent-exposed, membrane-bound conformation in the amyloidogenic region of apoA-I without affecting membrane fluidity. Since cell membranes have highly heterogeneous lipid compositions, our findings may provide a molecular basis for the preferential deposition of apoA-I amyloid fibrils in tissues and organs
Development of potent SNIPER derivatives against ERα
Aberrant expression of proteins often underlies many diseases, including cancer. A recently developed approach in drug development is small molecule-mediated, selective degradation of dysregulated proteins. We have devised a protein-knockdown system that utilizes chimeric molecules termed specific and nongenetic IAP-dependent protein erasers (SNIPERs) to induce ubiquitylation and proteasomal degradation of various target proteins. SNIPER(ER)-87 consists of an inhibitor of apoptosis protein (IAP) ligand LCL161 derivative that is conjugated to the estrogen receptorα (ERα) ligand 4-hydroxytamoxifen by a PEG linker, and we have previously reported that this SNIPER efficiently degrades the ERα protein. Here, we report that derivatization of the IAP ligand module yields SNIPER(ER)s with superior protein-knockdown activity. These improved SNIPER(ER)s exhibited higher binding affinities to IAPs and induced more potent degradation of ERα than does SNIPER(ER)-87. Further, they induced simultaneous degradation of cellular inhibitor of apoptosis protein 1 (cIAP1) and delayed degradation of X-linked IAP (XIAP). Notably, these reengineered SNIPER(ER)s efficiently induced apoptosis in MCF-7 human breast cancer cells that require IAPs for continued cellular survival. We found that one of these molecules, SNIPER(ER)-110, inhibits the growth of MCF-7 tumor xenografts in mice more potently than the previously characterized SNIPER(ER)-87. Mechanistic analysis revealed that our novel SNIPER(ER)s preferentially recruit XIAP, rather than cIAP1, to degrade ERα. Our results suggest that derivatized IAP ligands could facilitate further development of SNIPERs with potent protein knockdown and cytocidal activities against cancer cells requiring IAPs for survival
アポリポタンパクシツ シシツ ト サイボウ ノ ソウゴ サヨウ オヨビ コウミツド リポタンパクシツ HDL ノ シンセイ
京都大学0048新制・課程博士博士(薬学)甲第10120号薬博第507号新制||薬||198(附属図書館)UT51-2003-H541京都大学大学院薬学研究科創薬科学専攻(主査)教授 半田 哲郎, 教授 中川 照眞, 教授 加藤 博章学位規則第4条第1項該当Doctor of Pharmaceutical SciencesKyoto UniversityDA