18 research outputs found

    Anti-angiogenic effect of Ardisia crispa root invitro and in vivo and its potential pathway(s)

    Get PDF
    Ardisia crispa Thtnb A.DC (Myrsinaceae), locally known as “hen’s eyes” in Malaysia, is a traditional medicine plant with anti-inflammatory and anti-tumor promoting properties. This study aims to investigate the anti-angiogenic effect of the hexane extract of the plants root (ACRH) and its isolated benzoquinonoid (Ac2), using HUVE cells, in vitro and zebrafish angiogenic assay, in vivo. In cell invasion assay, both ACRH and AC2 at lowest concentration (0.1 ug/ml) significantly reduced the number of invaded cell about 30% (p <0.001), both ACRH and AC2 also started to inhibit the tube formation assay at 1 ug/mL, respectively. The gelatinases activity of ACRH and AC2 was determined in gelatine zymography assay. The results demonstrated the potential inhibitory effects of ACRH and AC2 on pro MMP-2 activity with a concentration dependent manner, while anti-MMp-9-activity-of the treatment was not apparent. Milliplex@ Map Human Angiogenesis/Growth Factor Magnetic Bead Panel 1 was used to further elucidate the possible molecular pathway of their-inhibitory action. Both ACRH and AC2-treated HUVECs concenrration-dependently, downregulated Angopoeitin-2, HgH, VEGF-c and VEGF-D. Interestingly, only ACRH significantly downregulated Follinstatin in concentration-dependent manner, but not AC2. Whilst. FB-EGF was significantly downregulated at higher concentration of ACRH and AC2. Last but not least, in transgenic zebrafish assay, only treatment with 5ug/ml of ACRH showed apparent reduction of ISV sprouts arising from the dorsal aorta. These findings validated the anti-angiogenic effects of both ACRH and AC2 potentially mediated via several angiogenic activators, by downreguiating HGH, Angopoietin-2, VEGFVEGF-D., respectively

    Utilizing Zebrafish to Identify Anti-(Lymph)Angiogenic Compounds for Cancer Treatment: Promise and Future Challenges

    No full text
    Cancer metastasis which predominantly occurs through blood and lymphatic vessels, is the leading cause of death in cancer patients. Consequently, several anti-angiogenic agents have been approved as therapeutic agents for human cancers such as metastatic renal cell carcinoma. Also, anti-lymphangiogenic drugs such as monoclonal antibodies VGX-100 and IMC-3C5 have undergone phase I clinical trials for advanced and metastatic solid tumors. Although anti-tumor-associated angiogenesis has proven to be a promising therapeutic strategy for human cancers, this approach is fraught with toxicities and development of drug resistance. This emphasizes the need for alternative anti-(lymph)angiogenic drugs. The use of zebrafish has become accepted as an established model for high-throughput screening, vascular biology, and cancer research. Importantly, various zebrafish transgenic lines have now been generated that can readily discriminate different vascular compartments. This now enables detailed in vivo studies that are relevant to both human physiological and tumor (lymph)angiogenesis to be conducted in zebrafish. This review highlights recent advancements in the zebrafish anti-vascular screening platform and showcases promising new anti-(lymph)angiogenic compounds that have been derived from this model. In addition, this review discusses the promises and challenges of the zebrafish model in the context of anti-(lymph)angiogenic compound discovery for cancer treatment

    Lyve1 expression reveals novel lymphatic vessels and new mechanisms for lymphatic vessel development in zebrafish

    No full text
    We have generated novel transgenic lines that brightly mark the lymphatic system of zebrafish using the lyve1 promoter. Facilitated by these new transgenic lines, we generated a map of zebrafish lymphatic development up to 15 days postfertilisation and discovered three previously uncharacterised lymphatic vessel networks: the facial lymphatics, the lateral lymphatics and the intestinal lymphatics. We show that a facial lymphatic vessel, termed the lateral facial lymphatic, develops through a novel developmental mechanism, which initially involves vessel growth through a single vascular sprout followed by the recruitment of lymphangioblasts to the vascular tip. Unlike the lymphangioblasts that form the thoracic duct, the lymphangioblasts that contribute to the lateral facial lymphatic vessel originate from a number of different blood vessels. Our work highlights the additional complexity of lymphatic vessel development in the zebrafish that may increase its versatility as a model of lymphangiogenesis

    A chemical enterocolitis model in zebrafish larvae that is dependent on microbiota and responsive to pharmacological agents

    No full text
    Inflammatory bowel disease (IBD) results from dysfunctional interactions between the intestinal immune system and microbiota, influenced by host genetic susceptibility. Because a key feature of the pathology is intestinal epithelial damage, potential disease factors have been traditionally analyzed within the background of chemical colitis models in mice. The zebrafish has greatly complemented the mouse for modeling aspects of disease processes, with an advantage for high content drug screens. Larval zebrafish exposed to the haptenizing agent trinitrobenzene sulfonic acid (TNBS) displayed impaired intestinal homeostasis and inflammation reminiscent of human IBD. There was a marked induction of pro-inflammatory cytokines, the degradative enzyme mmp9 and leukocytosis. Enterocolitis was dependent on microbiota and Toll-like receptor signaling, that can be ameliorated by antibiotic and anti-inflammatory drug treatments. This system will be useful to rapidly interrogate in vivo the biological significance of the IBD candidate genes so far identified and to carry out pharmacological modifier screens

    Chemically induced intestinal damage models in zebrafish larvae

    No full text
    Several intestinal damage models have been developed using zebrafish, with the aim of recapitulating aspects of human inflammatory bowel disease (IBD). These experimentally induced inflammation models have utilized immersion exposure to an array of colitogenic agents (including live bacteria, bacterial products, and chemicals) to induce varying severity of inflammation. This technical report describes methods used to generate two chemically induced intestinal damage models using either dextran sodium sulfate (DSS) or trinitrobenzene sulfonic acid (TNBS). Methods to monitor intestinal damage and inflammatory processes, and chemical-genetic methods to manipulate the host response to injury are also described

    Evolutionary Differences in the Vegf/Vegfr Code Reveal Organotypic Roles for the Endothelial Cell Receptor Kdr in Developmental Lymphangiogenesis

    No full text
    Lymphatic vascular development establishes embryonic and adult tissue fluid balance and is integral in disease. In diverse vertebrate organs, lymphatic vessels display organotypic function and develop in an organ-specific manner. In all settings, developmental lymphangiogenesis is considered driven by vascular endothelial growth factor (VEGF) receptor-3 (VEGFR3), whereas a role for VEGFR2 remains to be fully explored. Here, we define the zebrafish Vegf/Vegfr code in receptor binding studies. We find that while Vegfd directs craniofacial lymphangiogenesis, it binds Kdr (a VEGFR2 homolog) but surprisingly, unlike in mammals, does not bind Flt4 (VEGFR3). Epistatic analyses and characterization of a kdr mutant confirm receptor-binding analyses, demonstrating that Kdr is indispensible for rostral craniofacial lymphangiogenesis, but not caudal trunk lymphangiogenesis, in which Flt4 is central. We further demonstrate an unexpected yet essential role for Kdr in inducing lymphatic endothelial cell fate. This work reveals evolutionary divergence in the Vegf/Vegfr code that uncovers spatially restricted mechanisms of developmental lymphangiogenesis. Lymphatic vessels display organotypic function and develop in an organ-specific manner. Vogrin et al. find that the zebrafish Kdr receptor is indispensible for craniofacial, but not trunk, lymphangiogenesis whereas Flt4 is essential for the latter. Thus, vascular endothelial growth factor (VEGF) receptor signaling pathways are differentially employed in different tissues to drive developmental lymphangiogenesis

    A zebrafish model of inflammatory lymphangiogenesis

    No full text
    Inflammatory bowel disease (IBD) is a disabling chronic inflammatory disease of the gastrointestinal tract. IBD patients have increased intestinal lymphatic vessel density and recent studies have shown that this may contribute to the resolution of IBD. However, the molecular mechanisms involved in IBD-associated lymphangiogenesis are still unclear. In this study, we established a novel inflammatory lymphangiogenesis model in zebrafish larvae involving colitogenic challenge stimulated by exposure to 2,4,6-trinitrobenzenesulfonic acid (TNBS) or dextran sodium sulphate (DSS). Treatment with either TNBS or DSS resulted in vascular endothelial growth factor receptor (Vegfr)-dependent lymphangiogenesis in the zebrafish intestine. Reduction of intestinal inflammation by the administration of the IBD therapeutic, 5-aminosalicylic acid, reduced intestinal lymphatic expansion. Zebrafish macrophages express vascular growth factors vegfaa, vegfc and vegfd and chemical ablation of these cells inhibits intestinal lymphatic expansion, suggesting that the recruitment of macrophages to the intestine upon colitogenic challenge is required for intestinal inflammatory lymphangiogenesis. Importantly, this study highlights the potential of zebrafish as an inflammatory lymphangiogenesis model that can be used to investigate the role and mechanism of lymphangiogenesis in inflammatory diseases such as IBD

    Localised Collagen2a1 secretion supports lymphatic endothelial cell migration in the zebrafish embryo

    No full text
    The lymphatic vasculature develops primarily from pre-existing veins. A pool of lymphatic endothelial cells (LECs) first sprout from cardinal veins followed by migration and proliferation to colonise embryonic tissues. While much is known about the molecular regulation of LEC fate and sprouting during early lymphangiogenesis, we know far less about the instructive and permissive signals that support LEC migration through the embryo. Using a forward genetic screen, we identified mbtps1 and sec23a, components of the COP-II protein secretory pathway, as essential for developmental lymphangiogenesis. In both mutants, LECs initially depart the cardinal vein but then fail in their ongoing migration. A key cargo that failed to be secreted in both mutants was a type II collagen (Col2a1). Col2a1 is normally secreted by notochord sheath cells alongside which LECs migrate. col2a1a mutants displayed defects in the migratory behaviour of LECs and failed lymphangiogenesis. These studies thus identify Col2a1 as a key cargo secreted by notochord sheath cells and required for the migration of LECs. These findings combine with our current understanding to suggest that successive cell-to-cell and cell-matrix interactions regulate the migration of LECs through the embryonic environment during development

    Zebrafish facial lymphatics develop through sequential addition of venous and non-venous progenitors

    Get PDF
    Lymphatic vessels are known to be derived from veins; however, recent lineage-tracing experiments propose that specific lymphatic networks may originate from both venous and non-venous sources. Despite this, direct evidence of a non-venous lymphatic progenitor is missing. Here, we show that the zebrafish facial lymphatic network is derived from three distinct progenitor populations that add sequentially to the developing facial lymphatic through a relay-like mechanism. We show that while two facial lymphatic progenitor populations are venous in origin, the third population, termed the ventral aorta lymphangioblast (VA-L), does not sprout from a vessel; instead, it arises from a migratory angioblast cell near the ventral aorta that initially lacks both venous and lymphatic markers, and contributes to the facial lymphatics and the hypobranchial artery. We propose that sequential addition of venous and non-venous progenitors allows the facial lymphatics to form in an area that is relatively devoid of veins. Overall, this study provides conclusive, live imaging-based evidence of a non-venous lymphatic progenitor and demonstrates that the origin and development of lymphatic vessels is context-dependent

    3,4-Difluorobenzocurcumin Inhibits Vegfc-Vegfr3-Erk Signalling to Block Developmental Lymphangiogenesis in Zebrafish

    No full text
    Lymphangiogenesis, the formation of new lymphatic vessels from pre-existing vasculature, plays critical roles in disease, including in cancer metastasis and chronic inflammation. Preclinical and recent clinical studies have now demonstrated therapeutic utility for several anti-lymphangiogenic agents, but optimal agents and efficacy in different settings remain to be determined. We tested the anti-lymphangiogenic property of 3,4-Difluorobenzocurcumin (CDF), which has previously been implicated as an anti-cancer agent, using zebrafish embryos and cultured vascular endothelial cells. We used transgenic zebrafish labelling the lymphatic system and found that CDF potently inhibits lymphangiogenesis during embryonic development. We also found that the parent compound, Curcumin, does not inhibit lymphangiogenesis. CDF blocked lymphatic and venous sprouting, and lymphatic migration in the head and trunk of the embryo. Mechanistically, CDF impaired VEGFC-VEGFR3-ERK signalling in vitro and in vivo. In an in vivo pathological model of Vegfc-overexpression, treatment with CDF rescued endothelial cell hyperplasia. CDF did not inhibit the kinase activity of VEGFR3 yet displayed more prolonged activity in vivo than previously reported kinase inhibitors. These findings warrant further assessment of CDF and its mode of action as a candidate for use in metastasis and diseases of aberrant lymphangiogenesis
    corecore