52 research outputs found

    A Zebrafish Chemical Suppressor Screening Identifies Small Molecule Inhibitors of the Wnt/β-catenin Pathway

    Get PDF
    SummaryGenetic screening for suppressor mutants has been successfully used to identify important signaling regulators. Using an analogy to genetic suppressor screening, we developed a chemical suppressor screening method to identify inhibitors of the Wnt/β-catenin signaling pathway. We used zebrafish embryos in which chemically induced β-catenin accumulation led to an “eyeless” phenotype and conducted a pilot screening for compounds that restored eye development. This approach allowed us to identify geranylgeranyltransferase inhibitor 286 (GGTI-286), a geranylgeranyltransferase (GGTase) inhibitor. Our follow-up studies showed that GGTI-286 reduces nuclear localization of β-catenin and transcription dependent on β-catenin/T cell factor in mammalian cells. In addition to pharmacological inhibition, GGTase gene knockdown also attenuates the nuclear function of β-catenin. Overall, we validate our chemical suppressor screening as a method for identifying Wnt/β-catenin pathway inhibitors and implicate GGTase as a potential therapeutic target for Wnt-activated cancers

    エンドウプロトプラスト細胞における植物プロモータの発現

    Get PDF
    High yields of viable pea protoplasts were produced from suspension cultured cells derived from calli formed from embryogenic tissues or leaves and the conditions for the optimum expression of chloramphenicol acetyltransferase (CAT) fused to the phenylalanine ammonia-lyase gene of Pisum sativum (pPAL1-15) were investigated by transient assay after electroporation. A fungal elicitor isolated from a pea pathogen, Mycosphaerella pinodes, and the reduced from of glutathione induced the expression of PAL promoter but orthovanadate, a plasma membrane ATPase inhibitor, considerably suppressed the gene expression. Rice protoplasts were also prepared from the suspension cultured cells derived from embryonic tissues, and the effects of elicitors on the expression of CAT in pPAL1-15-electroporated rice protoplasts were examined. No distinctive induction of CAT activity was observed by the treatment of rice protoplasts with a chitosan oligomer elicitor

    Transcription and Translation Products of the Cytolysin Gene psm-mec on the Mobile Genetic Element SCCmec Regulate Staphylococcus aureus Virulence

    Get PDF
    The F region downstream of the mecI gene in the SCCmec element in hospital-associated methicillin-resistant Staphylococcus aureus (HA-MRSA) contains two bidirectionally overlapping open reading frames (ORFs), the fudoh ORF and the psm-mec ORF. The psm-mec ORF encodes a cytolysin, phenol-soluble modulin (PSM)-mec. Transformation of the F region into the Newman strain, which is a methicillin-sensitive S. aureus (MSSA) strain, or into the MW2 (USA400) and FRP3757 (USA300) strains, which are community-acquired MRSA (CA-MRSA) strains that lack the F region, attenuated their virulence in a mouse systemic infection model. Introducing the F region to these strains suppressed colony-spreading activity and PSMα production, and promoted biofilm formation. By producing mutations into the psm-mec ORF, we revealed that (i) both the transcription and translation products of the psm-mec ORF suppressed colony-spreading activity and promoted biofilm formation; and (ii) the transcription product of the psm-mec ORF, but not its translation product, decreased PSMα production. These findings suggest that both the psm-mec transcript, acting as a regulatory RNA, and the PSM-mec protein encoded by the gene on the mobile genetic element SCCmec regulate the virulence of Staphylococcus aureus

    オルガネラ内に蓄積した凝集タンパク質が引き起こす局所的なレドックス破綻

    No full text
    付記する学位プログラム名: 京都大学大学院思修館京都大学0048新制・課程博士博士(総合学術)甲第21931号総総博第6号新制||総総||1(附属図書館)京都大学大学院総合生存学館総合生存学専攻(主査)教授 阪井 康能, 教授 山口 栄一, 教授 積山 薫学位規則第4条第1項該当Doctor of PhilosophyKyoto UniversityDGA

    Sequence Analysis of α-helix-turn-α-helix Motif Region of HrpX in Plant Pathogenic Xanthomonas

    No full text

    Local Redox Imbalance Induced by Intraorganellar Accumulation of Misfolded Proteins

    No full text
    学位プログラム名: 京都大学大学院思修

    Inhibition of surgical trauma-enhanced peritoneal dissemination of tumor cells by human catalase derivatives in mice.

    Get PDF
    Surgical trauma, which is inevitably associated with the surgical removal of cancer, has been reported to accelerate tumor metastasis. The close association of reactive oxygen species with the trauma and tumor metastasis supports the possibility of using antioxidants for the inhibition of metastasis. To inhibit surgical trauma-enhanced peritoneal dissemination, human catalase (hCAT) derivatives, i.e., hCAT-nona-arginine peptide (hCAT-R9) and hCAT-albumin-binding peptide (hCAT-ABP), were designed to increase the retention time of the antioxidant enzyme in the abdominal cavity after intraperitoneal administration. Both (125)I-labeled derivatives showed significantly prolonged retention in the cavity compared to (125)I-hCAT. Cauterization of the cecum of mice with a hot iron, an experimental model of surgical trauma, induced abdominal adhesions. In addition, cauterization followed by colon26 tumor cell inoculation increased lipid peroxidation in the cecum and mRNA expression of molecules associated with tissue repair/adhesion and inflammation in the peritoneum. hCAT derivatives significantly suppressed the increased mRNA expression. The cauterization also increased the number of tumor cells in the abdominal organs, and the number was significantly reduced by hCAT-R9 or hCAT-ABP. These results indicate that hCAT-R9 and hCAT-ABP, both of which have a long retention time in the peritoneal cavity, can be effective at inhibiting surgery-induced peritoneal metastasis

    Coronin-1 is phosphorylated at Thr-412 by protein kinase Cα in human phagocytic cells

    No full text
    Coronin-1, a hematopoietic cell-specific actin-binding protein, is thought to be involved in the phagocytic process through its interaction with actin filaments. The dissociation of coronin-1 from phagosomes after its transient accumulation on the phagosome surface is associated with lysosomal fusion. We previously reported that 1) coronin-1 is phosphorylated by protein kinase C (PKC), 2) coronin-1 has two phosphorylation sites, Ser-2 and Thr-412, and 3) Thr-412 of coronin-1 is phosphorylated during phagocytosis. In this study, we examined which PKC isoform is responsible for the phosphorylation of coronin-1 at Thr-412 by using isotype-specific PKC inhibitors and small interfering RNAs (siRNAs). Thr-412 phosphorylation of coronin-1 was suppressed by Gö6976, an inhibitor of PKCα and PKCβI. This phosphorylation was attenuated by siRNA for PKCα, but not by siRNA for PKCβ. Furthermore, Thr-412 of coronin-1 was phosphorylated by recombinant PKCα in vitro, but not by recombinant PKCβ. We next examined the effects of Gö6976 on the intracellular distribution of coronin-1 in HL60 cells during phagocytosis. The confocal fluorescence microscopic observation showed that coronin-1 was not dissociated from phagosomes in Gö6976-treated cells. These results indicate that phosphorylation of coronin-1 at Thr-412 by PKCα regulates intracellular distribution during phagocytosis

    Enhanced active targeting via cooperative binding of ligands on liposomes to target receptors.

    Get PDF
    To achieve effective active targeting in a drug delivery system, we previously developed dual-targeting (DT) liposomes decorated with both vascular endothelial growth factor receptor-1 (VEGFR-1)-targeted APRPG and CD13-targeted GNGRG peptide ligands for tumor neovessels, and observed the enhanced suppression of tumor growth in Colon26 NL-17 tumor-bearing mice by the treatment with the DT liposomes encapsulating doxorubicin. In this present study, we examined the binding characteristics of DT liposomes having a different couple of ligands, namely, APRPG and integrin αvβ3-targeted GRGDS peptides. These DT liposomes synergistically associated to stimulated human umbilical vein endothelial cells compared with single-targeting (ST) liposomes decorated with APRPG or GRGDS. The results of a surface plasmon resonance assay showed that ST liposomes modified with APRPG or GRGDS peptide selectively bound to immobilized VEGFR-1 or integrin αvβ3, respectively. DT liposomes showed a higher affinity for a mixture of VEGFR-1 and integrin αvβ3 compared with ST liposomes, suggesting the cooperative binding of these 2 kinds of ligand on the liposomal surface. In a biodistribution assay, the DT liposomes accumulated to a significantly greater extent in the tumors of Colon26 NL-17 tumor-bearing mice compared with other liposomes. Moreover, the intratumoral distribution of the liposomes examined by confocal microscopy suggested that the DT liposomes targeted not only angiogenic endothelial cells but also tumor cells due to GRGDS-decoration. These findings suggest that "dual-targeting" augmented the affinity of the liposomes for the target cells and would thus be useful for active-targeting drug delivery for cancer treatment
    corecore