144 research outputs found

    An Improved Action for Heavy Quarks

    Get PDF
    We extend the Fermilab method for heavy quarks to include all interactions of dimension six in the action. We discuss a subtlety in the power counting, which implies that, for heavy quarks, certain interactions of dimension seven are commensurate with some of those of dimension six. We then present tree-level matching conditions obtained from calculating the Compton scattering amplitude for (lattice) QCD. When the matching conditions have been applied, the improved action removes (tree-level) discretization errors of order a2p3/mQa^2\bm{p}^3/m_Q and a3p3a^3\bm{p}^3.Comment: 1+5 pp., contribution to Lattice 2006(Quark Masses, Gauge Couplings, and Renormalization

    Spectral functions of charmonium from 2 flavour anisotropic lattice data

    Get PDF
    The spectral functions of QCD can give us insight into properties of hadrons, and they are useful in probing the QCD vacuum. I will discuss the correlators and spectral functions of charmonium in high temperature two flavour QCD. The spectral functions have been obtained using the Maximum Entropy Method from anisotropic lattice data using the conserved vector current. This work has been done as part of the FASTSUM collaboration. We find that the spectral functions for zero momentum are stable. At non-zero momentum the spectral functions are less stable but still produce resonance and transport peaks. This work is part of our programme to calculate the heavy quark diffusion constant.Comment: 7 pages, 5 figures, 31st International Symposium on Lattice Field Theory LATTICE 201

    Heavy-quark meson spectrum tests of the Oktay-Kronfeld action

    Get PDF
    The Oktay-Kronfeld (OK) action extends the Fermilab improvement program for massive Wilson fermions to higher order in suitable power-counting schemes. It includes dimension-six and -seven operators necessary for matching to QCD through order O(Λ3/mQ3){\mathrm{O}}(\Lambda^3/m_Q^3) in HQET power counting, for applications to heavy-light systems, and O(v6){\mathrm{O}}(v^6) in NRQCD power counting, for applications to quarkonia. In the Symanzik power counting of lattice gauge theory near the continuum limit, the OK action includes all O(a2){\mathrm{O}}(a^2) and some O(a3){\mathrm{O}}(a^3) terms. To assess whether the theoretical improvement is realized in practice, we study combinations of heavy-strange and quarkonia masses and mass splittings, designed to isolate heavy-quark discretization effects. We find that, with one exception, the results obtained with the tree-level-matched OK action are significantly closer to the continuum limit than the results obtained with the Fermilab action. The exception is the hyperfine splitting of the bottom-strange system, for which our statistical errors are too large to draw a firm conclusion. These studies are carried out with data generated with the tadpole-improved Fermilab and OK actions on 500 gauge configurations from one of MILC's a0.12a\approx0.12~fm, Nf=2+1N_f=2+1-flavor, asqtad-staggered ensembles.Comment: 12 pages, 5 figure

    Properties of charmonium in lattice QCD with 2+1 flavors of improved staggered sea quarks

    Full text link
    We use the dynamical gluon configurations provided by the MILC collaboration in a study of the charmonium spectrum and psi leptonic width. We examine sea quark effects on mass splitting and on the leptonic decay matrix element for light masses as low as m_s/5, while keeping the strange quark mass fixed and the lattice spacing nearly constant.Comment: Lattice2003(heavy

    Charmonium Spectrum on dynamical anisotropic lattices

    Get PDF
    We present a first study of the charmonium spectrum on N_f=2 dynamical, anisotropic lattices. We take advantage of all-to-all quark propagators to build spatially extended interpolating operators to increase the overlap with states not easily accessible with point propagators such as radially excited states of eta_c, psi, and chi_c, D-waves and hybrid states.Comment: 9 pages, 7 figures, Lattice 2005 Conferenc

    D_s spectrum and leptonic decays with Fermilab heavy quarks and improved staggered light quarks

    Full text link
    We present preliminary results for the D_s meson spectrum and decay constants in unquenched lattice QCD. Simulations are carried out with 2+1 dynamical quarks using gauge configurations generated by the MILC collaboration. We use the ``asqtad'' a^2 improved staggered action for the light quarks, and the clover heavy quark action with the Fermilab interpretation. We compare our spectrum results with the newly discovered 0+ and 1+ states in the D_s system.Comment: 3pp. Presented at 21st International Symposium on Lattice Field Theory (LATTICE 2003), Tsukuba, Ibaraki, Japan, 15-19 Jul 200
    corecore