49 research outputs found
Transfer Learning for Electricity Price Forecasting
Electricity price forecasting is an essential task for all the deregulated
markets of the world. The accurate prediction of the day-ahead electricity
prices is an active research field and available data from various markets can
be used as an input for forecasting. A collection of models have been proposed
for this task, but the fundamental question on how to use the available big
data is often neglected. In this paper, we propose to use transfer learning as
a tool for utilizing information from other electricity price markets for
forecasting. We pre-train a bidirectional Gated Recurrent Units (BGRU) network
on source markets and finally do a fine-tuning for the target market. Moreover,
we test different ways to use the input data from various markets in the
models. Our experiments on five different day-ahead markets indicate that
transfer learning improves the performance of electricity price forecasting in
a statistically significant manner
Unsupervised Myocardial Segmentation for Cardiac BOLD
A fully automated 2-D+time myocardial segmentation framework is proposed for cardiac magnetic resonance (CMR)
blood-oxygen-level-dependent (BOLD) data sets. Ischemia detection with CINE BOLD CMR relies on spatio-temporal patterns in myocardial
intensity, but these patterns also trouble supervised segmentation methods, the de facto standard for myocardial segmentation in cine MRI.
Segmentation errors severely undermine the accurate extraction of these patterns. In this paper, we build a joint motion and appearance method
that relies on dictionary learning to find a suitable subspace.Our method is based on variational pre-processing and spatial regularization using
Markov random fields, to further improve performance. The superiority of the proposed segmentation technique is demonstrated on a data set
containing cardiac phase resolved BOLD MR and standard CINE MR image sequences acquired in baseline and is chemic condition across ten
canine subjects. Our unsupervised approach outperforms even supervised state-of-the-art segmentation techniques by at least 10% when using
Dice to measure accuracy on BOLD data and performs at par for standard CINE MR. Furthermore, a novel segmental analysis method attuned
for BOLD time series is utilized to demonstrate the effectiveness of the proposed method in preserving key BOLD patterns
Detecting respiratory motion artefacts for cardiovascular MRIs to ensure high-quality segmentation
While machine learning approaches perform well on their training domain, they
generally tend to fail in a real-world application. In cardiovascular magnetic
resonance imaging (CMR), respiratory motion represents a major challenge in
terms of acquisition quality and therefore subsequent analysis and final
diagnosis. We present a workflow which predicts a severity score for
respiratory motion in CMR for the CMRxMotion challenge 2022. This is an
important tool for technicians to immediately provide feedback on the CMR
quality during acquisition, as poor-quality images can directly be re-acquired
while the patient is still available in the vicinity. Thus, our method ensures
that the acquired CMR holds up to a specific quality standard before it is used
for further diagnosis. Therefore, it enables an efficient base for proper
diagnosis without having time and cost-intensive re-acquisitions in cases of
severe motion artefacts. Combined with our segmentation model, this can help
cardiologists and technicians in their daily routine by providing a complete
pipeline to guarantee proper quality assessment and genuine segmentations for
cardiovascular scans. The code base is available at
https://github.com/MECLabTUDA/QA_med_data/tree/dev_QA_CMRxMotion
Unsupervised Myocardial Segmentation for Cardiac MRI:Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015
Though unsupervised segmentation was a de-facto standard for cardiac MRI segmentation early on, recently cardiac MRI segmentation literature has favored fully supervised techniques such as Dictionary Learning and Atlas-based techniques. But, the benefits of unsupervised techniques e.g., no need for large amount of training data and better potential of handling variability in anatomy and image contrast, is more evident with emerging cardiac MR modalities. For example, CP-BOLD is a new MRI technique that has been shown to detect ischemia without any contrast at stress but also at rest conditions. Although CP-BOLD looks similar to standard CINE, changes in myocardial intensity patterns and shape across cardiac phases, due to the heart’s motion, BOLD effect and artifacts affect the underlying mechanisms of fully supervised segmentation techniques resulting in a significant drop in segmentation accuracy. In this paper, we present a fully unsupervised technique for segmenting myocardium from the background in both standard CINE MR and CP-BOLD MR. We combine appearance with motion information (obtained via Optical Flow) in a dictionary learning framework to sparsely represent important features in a low dimensional space and separate myocardium from background accordingly. Our fully automated method learns background-only models and one class classifier provides myocardial segmentation. The advantages of the proposed technique are demonstrated on a dataset containing CP-BOLD MR and standard CINE MR image sequences acquired in baseline and ischemic condition across 10 canine subjects, where our method outperforms state-of-the-art supervised segmentation techniques in CP-BOLD MR and performs at-par for standard CINE MR
Dictionary Learning Based Image Descriptor for Myocardial Registration of CP-BOLD MR:Medical Image Computing and Computer-Assisted Intervention -- MICCAI 2015
Cardiac Phase-resolved Blood Oxygen-Level-Dependent (CP-BOLD) MRI is a new contrast agent- and stress-free imaging technique for the assessment of myocardial ischemia at rest. The precise registration among the cardiac phases in this cine type acquisition is essential for automating the analysis of images of this technique, since it can potentially lead to better specificity of ischemia detection. However, inconsistency in myocardial intensity patterns and the changes in myocardial shape due to the heart’s motion lead to low registration performance for state-of-the-art methods. This low accuracy can be explained by the lack of distinguishable features in CP-BOLD and inappropriate metric definitions in current intensity-based registration frameworks. In this paper, the sparse representations, which are defined by a discriminative dictionary learning approach for source and target images, are used to improve myocardial registration. This method combines appearance with Gabor and HOG features in a dictionary learning framework to sparsely represent features in a low dimensional space. The sum of absolute differences of these distinctive sparse representations are used to define a similarity term in the registration framework. The proposed approach is validated on a dataset of CP-BOLD MR and standard CINE MR acquired in baseline and ischemic condition across 10 canines