4 research outputs found

    Identification and genetic characterization of Pseudomonas syringae pv. syringae from sweet cherry in Turkey

    Get PDF
    Pseudomonas syringae pv. syringae (Pss), which causes bacterial canker, is the most polyphagous bacterium in the P. syringae complex due to its broad host range. This pathogen is considered the major bacterial disease in cherry orchards. In this study, several samples were collected from infected sweet cherry trees in different locations of the Marmara region in Turkey between 2016-2018. Sixty-three isolates were identified as Pss by pathogenicity, LOPAT, GATTa, and MALDI-TOF MS tests. Total genomic DNA was extracted to confirm identity, followed by PCR amplification of syrB and cfl genes. Out of 63 isolates, 12 were randomly selected for Repetitive Element Sequence-based PCR (rep-PCR) and Multilocus Sequence Typing (MLST) analysis to gain insight into the relationships of those isolates. The cluster analysis of rep-PCR (ERIC-, REP- and BOX-PCR) could classify the isolates into two distinct clusters. Phylogenetic analysis was carried out to obtain the relation between isolates and the location.The MLST analysis of gyrB, rpoDp, rpoDs, and gltA genes allowed a clear allocation of the isolates into two separate main clusters. The relationship among the isolates were also evaluated by constructing a genealogical median-joining network (MJN). The isolates from six locations produced 11 haplotypes that were illustrated in the MJN. The results of this study proved that location could not be an indicator for showing the genetic diversity of Pss from cherry orchards. As the genetic variability of Pseudomonads has been demonstrated, the current study also showed high diversity among different isolates even within the populations. While more research is recommended, the results of this study contributed to a better understanding of the Pss evolutionary progress and genetic diversity of sweet cherry isolates

    Chemical Control of Powdery Mildew of Bigleaf Hydrangea

    Get PDF
    The efficacy of the fungicide pydiflumetofen + difenoconazole (Postiva) was evaluated at varying application rates and intervals for the control of powdery mildew (Golovinomyces orontii, formerly Erysiphe polygoni) in bigleaf hydrangea (Hydrangea macrophylla ‘Nikko Blue’). Container-grown hydrangeas were arranged in a completely randomized design with six single-plant replications. Experiments were done in 2022 and 2023 under both greenhouse and shade house conditions (56% shade). Powdery mildew in hydrangea was developed naturally. Pydiflumetofen + difenoconazole at 1.1, 1.6, and 2.2 ml·L−1 and a standard fungicide azoxystrobin + benzovindiflupyr (Mural) at 0.5 g·L−1 were sprayed to runoff on 2-, 4-, and 6-week intervals. Plants that were not treated with fungicide served as the control. Plants were evaluated weekly for disease severity (0% to 100% foliage affected) and defoliation (0% to 100% defoliation). The season-long area under the disease progress curve (AUDPC) and defoliation progress curve (AUDFC) were calculated for the evaluation period. The initial and final plant height and width were recorded, and height and width increase were determined. Pydiflumetofen + difenoconazole and azoxystrobin + benzovindiflupyr significantly reduced final disease severity, AUDPC, and defoliation both in the greenhouse and shade house compared with control plants. In both greenhouse trials and the 2022 shade house trial, AUDFC was reduced in all treatments compared with the control plants. However, AUDFC was not reduced by all treatments in the 2023 shade house trial. Pooled over application intervals, the low rate of pydiflumetofen + difenoconazole was as effective as the medium and high rates of pydiflumetofen + difenoconazole and azoxystrobin + benzovindiflupyr in reducing final powdery mildew severity and AUDPC both in the greenhouse and shade house in both 2022 and 2023. No significant differences between application intervals were noted in final disease severity and progress. Control of powdery mildew with fungicides failed to increase plant dimensions (i.e., plant height and width) compared with the no fungicide control. Because all application rates and intervals of pydiflumetofen + difenoconazole provided comparable powdery mildew disease control, it is suggested that using a low rate of pydiflumetofen + difenoconazole with the longest application interval (6 weeks) is the most cost-effective approach for managing powdery mildew in bigleaf hydrangeas
    corecore