6 research outputs found

    A Cross-Sectional Study of the Gut Microbiota Composition in Moscow Long-Livers

    No full text
    The aim was to assess the gut microbiota of long-livers from Moscow. This study included two groups of patients who signed their consent to participate. The group of long-livers (LL) included 20 participants aged 97–100 years (4 men and 16 women). The second group included 22 participants aged 60–76 years (6 men) without clinical manifestations of chronic diseases (healthy elderly). Gut microbiota was studied by 16S rRNA sequencing. Long-livers underwent a complex geriatric assessment as well as expanded blood biochemistry. Gut microbiota composition in the cohorts was also compared with microbiome in long-livers from Japan and Italy. Russian long-livers’ microbiome contained more beneficial bacteria than healthy elderly including Ruminococcaceae, Christensenellaceae, Lactobacillaceae families. Conditional pathogens like Veillonellaceae, Mogibacteriaceae, Alcaligenaceae, Peptococcaceae, Peptostreptococcaceae were more abundant in the healthy elderly. Compared with Italian and Japanese microbiome LL, the Russian LL appeared to be more similar to the Italian cohort. Bifidobacterium/Coprococcus and Faecalibacterium/Coprococcus balances were associated with femoral and carotid intima–media thickness, respectively. Bifidobacterium/Coriobacteriaceae balance was assessed with the folic acid level and Faecalibacterium/Coriobacteriaceae_u the with Mini Nutritional Assessment score. Long-livers’ microbiome appeared to be unexpectedly balanced. The high representation of beneficial bacteria in long-livers may prevent them from low-grade inflammation and thus protect them from the development of atherosclerosis and other aging-associated conditions

    Draft genomes of Enterococcus faecium strains isolated from human feces before and after eradication therapy against Helicobacter pylori

    No full text
    The abundance of Enterococci in the human intestinal microbiota environment is usually < 0.1% of the total bacterial fraction. The multiple resistance to antibiotics of the opportunistic Enterococcus spp. is alarming for the world medical community because of their high prevalence among clinically significant strains of microorganisms. Enterococci are able to collect different mobile genetic elements and transmit resistance to antibiotics to wide range of Gram-positive and Gram-negative species of microorganisms, including the transmission of vancomycin resistance to methicillin-resistant strains of Staphylococcus aureus. The number of infections caused by antibiotics resistant strains of Enterococcus spp. is increasing. Here we present a draft genomes of Enterococcus faecium strains. These strains were isolated from human feces before and after (1 month) Helicobacter pylori eradication therapy. The samples were subject to whole-genome sequencing using Illumina HiSeq. 2500 platform. The data is available at NCBI https://www.ncbi.nlm.nih.gov/bioproject/PRJNA412824

    Data on gut metagenomes of the patients with Helicobacter pylori infection before and after the antibiotic therapy

    No full text
    Antibiotic therapy can lead to the disruption of gut microbiota community with possible negative outcomes for human health. One of the diseases for which the treatment scheme commonly included antibiotic intake is Helicobacter pylori infection. The changes in taxonomic and functional composition of microbiota in patients can be assessed using “shotgun” metagenomic sequencing. Ten stool samples were collected from 4 patients with Helicobacter pylori infection before and directly after the H. pylori eradication course. Additionally, for two of the subjects, the samples were collected 1 month after the end of the treatment. The samples were subject to “shotgun” (whole-genome) metagenomic sequencing using Illumina HiSeq platform. The reads are deposited in the ENA (project ID: PRJEB18265)

    Data on gut metagenomes of the patients with Helicobacter pylori infection before and after the antibiotic therapy

    No full text
    Antibiotic therapy can lead to the disruption of gut microbiota community with possible negative outcomes for human health. One of the diseases for which the treatment scheme commonly included antibiotic intake is Helicobacter pylori infection. The changes in taxonomic and functional composition of microbiota in patients can be assessed using “shotgun” metagenomic sequencing. Ten stool samples were collected from 4 patients with Helicobacter pylori infection before and directly after the H. pylori eradication course. Additionally, for two of the subjects, the samples were collected 1 month after the end of the treatment. The samples were subject to “shotgun” (whole-genome) metagenomic sequencing using Illumina HiSeq platform. The reads are deposited in the ENA (project ID: PRJEB18265)

    Modelling approaches for studying the microbiome

    No full text
    Advances in metagenome sequencing of the human microbiome have provided a plethora of new insights and revealed a close association of this complex ecosystem with a range of human diseases. However, there is little knowledge about how the different members of the microbial community interact with each other and with the host, and we lack basic mechanistic understanding of these interactions related to health and disease. Mathematical modelling has been demonstrated to be highly advantageous for gaining insights into the dynamics and interactions of complex systems and in recent years, several modelling approaches have been proposed to enhance our understanding of the microbiome. Here, we review the latest developments and current approaches, and highlight how different modelling strategies have been applied to unravel the highly dynamic nature of the human microbiome. Furthermore, we discuss present limitations of different modelling strategies and provide a perspective of how modelling can advance understanding and offer new treatment routes to impact human health
    corecore