8 research outputs found

    COMPUTER AIDED DESIGN IN WHEY PROCESSING

    Get PDF
    \Vhey processing alternatives were investigated with the help of Computer Aided Design. Mass and energy balances were calculated, process units were sized, and an economic analysis vas conducted. Using IRR and ACF methods for calculating profitability methods optimum economic strategies were suggested for whey processing

    Sustainable food processing systems - Path to a zero discharge: reduction of water, waste and energy

    Get PDF
    AbstractSince food processing systems consume extensive amounts of water and energy, the food industry has the incentive to reduce water and energy with the goal of developing a zero discharge process that utilizes substantially less water and energy, and generates no waste. The objective of this study is to evaluate water/energy consumption and to propose alternatives that reduce water and energy in the processing of three food products; 1) edible bean, 2) dairy products, and 3) corn masa. Three main approaches were; 1) plant-scale audit data collection to determine energy consumption, 2) laboratory scale experiments to assess product quality changes with a reduction in water and energy usage, and 3) computer-aided simulation to design systems for reduced water and energy consumption and wastewater generation. The results suggest that a zero discharge process is feasible by reducing water and energy. Modifications to the edible bean process reduced water input up to 55% and wastewater generation was decreased up to 91%. In dairy plant, the optimal heat recovery option could economically decrease the boiler fuel requirement by 50 times, and reduce the operating cost to 2.7% of the present cost. The water reuse process in redesigned corn masa process could reduce 90% of wastewater and 55% of water usage compared to the traditional process. The amount of energy required for heating was saved by 70% in the water reuse process. When scaling-up to plant-scale, reusing water could reduce water consumption by 95% and reduce energy requirement by about 80%

    Analysis of the Flow Behaviors of Corn Meal during Extrusion

    Get PDF
    Food extrusion can be used to make many products we consume today, including pasta, cereals and more. The ability to predict the characteristics of the final product from an extruder using raw material characteristics and operating conditions is vital to the extrusion process. In order to answer this need, the flow behavior of corn meal was measured in a lab viscometer (off-line) and compared to the flow behaviors from an extruder (in-line) at three different moisture contents (32.5%, 35%, 37.5% wet basis). The extruder and product are heated through the friction of the corn meal passing through the barrel not external heaters. Feed rate, RPM, and moisture content are the inputs considered to compare the die temperatures, shear rates, and shear stresses. Behaviors of extruder outputs based on RPMs, moisture contents, and feed rates have been recorded and compared. A method called super-positioning was used to compare the off-line and in-line data. Previous results have been not conclusive. Our methodology can be used to take lab results and predict extruder flow behaviors. The results can also be used in predicting operating conditions for various sizes of extruders. The super-positioning methodology will be able to be applied to other extruders and advance a flow model for the current extruder

    Optimal design of batch/semicontinuous processes

    No full text
    corecore