2 research outputs found
Assessing absorption-based CO2 capture: Research progress and techno-economic assessment overview
Rapid industrial developments and rising population are mounting concerns, leading to increased greenhouse gas (GHG) emissions and resultant climate change. Therefore, to curb such drastic trends, it is necessary to adopt and develop a sustainable environment. Among the most effective ways to lower GHG emissions is carbon capture. Absorption is one of the most mature methods of reducing CO2 due to its high processing capacity, excellent adaptability, and reliability. This study aims to evaluate the most recent advancements in various CO2 capture techniques, with an emphasis on absorption technology. The techno-economic analyses of absorption-based CO2 capture processes were meticulously discussed. These include studies on solvent screening as well as techno-economic analysis methods. Economic estimators such as the payback period, rate of return and net present value are discussed. The research progress in absorption-based capture compared to other separation methods, is elucidated. Advances in the applications of various absorption solvents including aqueous, phase change solvents and deep eutectic solvents are presented. Finally, key recommendations are provided to tackle the challenges for efficient utilization of the absorption technique
Remediation of Heavy Metals Using Biomass-Based Adsorbents: Adsorption Kinetics and Isotherm Models
This study aims to comprehensively investigate the current advances in water treatment technologies for the elimination of heavy metals using biomass-based adsorbents. The enhancement of adsorption capacity in biomass materials is achieved through surface modification, which increases their porosity and surface area. The study therefore focuses on the impact of different surface modification techniques on the adsorption capacity, as well as the evaluation of adsorptive removal techniques and the analysis of various isotherm and kinetics models applied to heavy metal contaminants. The utilization of kinetic and isotherm models in heavy metal sorption is crucial as it provides a theoretical background to understand and predict the removal efficiency of different adsorbent materials. In contrast to previous studies, this research examines a wide range of adsorbent materials, providing a comprehensive understanding of their efficacy in removing heavy metals from wastewater. The study also delves into the theoretical foundations of the isotherm and kinetics models, highlighting their strengths, limitations, and effectiveness in describing the performance of the adsorbents. Moreover, the study sheds light on the regenerability of adsorbents and the potential for their engineering applications. Valuable insights into the state-of-the-art methods for heavy metal wastewater cleanup and the resources required for future developments were discussed