33 research outputs found

    Generalizability of empirical correlations for predicting higher heating values of biomass

    Get PDF
    Designing efficient biomass energy systems requires a thorough understanding of the physicochemical, thermodynamic, and physical properties of biomass. One crucial parameter in assessing biomass energy potential is the higher heating value (HHV), which quantifies its energy content. Conventionally, HHV is determined through bomb calorimetry, but this method is limited by factors such as time, accessibility, and cost. To overcome these limitations, researchers have proposed a diverse range of empirical correlations and machine-learning approaches to predict the HHV of biomass based on proximate and ultimate analysis results. The novelty of this research is to explore the universal applicability of the developed empirical correlations for predicting the Higher Heating Value (HHV) of biomass. To identify the best empirical correlations, nearly 400 different biomass feedstocks were comprehensively tested with 45 different empirical correlations developed to use ultimate analysis (21 different empirical correlations), proximate analysis (16 different empirical correlations) and combined ultimate-proximate analysis (8 different empirical correlations) data of these biomass feedstocks. A quantitative and statistical analysis was conducted to assess the performance of these empirical correlations and their applicability to diverse biomass types. The results demonstrated that the empirical correlations utilizing ultimate analysis data provided more accurate predictions of HHV compared to those based on proximate analysis or combined data. Two specific empirical correlations including coefficients for each element (C, H, N) and their interactions (C*H) demonstrate the best HHV prediction with the lowest MAE (~0.49), RMSE (~0.64), and MAPE (~2.70%). Furthermore, some other empirical correlations with carbon content being the major determinant also provide good HHV prediction from a statistical point of view; MAE (~0.5–0.8), RMSE (~0.6–0.9), and MAPE (~2.8–3.8%)

    Ozone application in different industries:a review of recent developments

    Get PDF
    Ozone – a powerful antimicrobial agent, has been extensively applied for decontamination purposes in several industries (including food, water treatment, pharmaceuticals, textiles, healthcare, and the medical sectors). The advent of the COVID-19 pandemic has led to recent developments in the deployment of different ozone-based technologies for the decontamination of surfaces, materials and indoor environments. The pandemic has also highlighted the therapeutic potential of ozone for the treatment of COVID-19 patients, with astonishing results observed. The key objective of this review is to summarize recent advances in the utilisation of ozone for decontamination applications in the above-listed industries while emphasising the impact of key parameters affecting microbial reduction efficiency and ozone stability for prolonged action. We realise that aqueous ozonation has received higher research attention, compared to the gaseous application of ozone. This can be attributed to the fact that water treatment represents one of its earliest applications. Furthermore, the application of gaseous ozone for personal protective equipment (PPE) and medical device disinfection has not received a significant number of contributions compared to other applications. This presents a challenge for which the correct application of ozonation can mitigate. In this review, a critical discussion of these challenges is presented, as well as key knowledge gaps and open research problems/opportunities

    Low-temperature chemical looping oxidation of hydrogen for space heating

    Get PDF
    Chemical looping combustion (CLC) is an advanced combustion process in which the combustion reaction splits into two parts; in the first reaction metal oxides are used as oxygen suppliers for fuel combustion and then in the second reaction, reduced metal oxides are re-oxidised in an air reactor. Although this technology could be applicable for the safe implication of “low-temperature oxidation of hydrogen”, there is limited understanding of oxygen carrier reduction stages and the oxidation mechanism of hydrogen throughout the process. The novelty of this research lies in its pioneering investigation of low-temperature oxidation of hydrogen through chemical looping technology as a safe and alternative heating system, using three distinct metal oxide oxygen carriers: CuO, Co3O4, and Mn2O3. The oxidation of hydrogen over these oxygen carriers was comprehensively studied in a fixed-bed reactor operating at 200–450 °C. XRD analysis demonstrates that CuO directly reduced to metallic Cu at 200–450 °C, instead of following a sequential reduction step CuO→Cu4O3→Cu2O→Cu throughout the temperature. Co3O4 was reduced to a mixture CoO and Co at 450 °C, which may refer to a sequential reduction step Co3O4→CoO→Co with increasing the temperature. Decreasing the reduction temperature led to an elevation in CoO formation. Mn2O3 can also reduce to a mixture of Mn3O4 and MnO at temperatures between 250 and 400 °C. Compared to temperature, the increase in the residence time did not show any further reduction in Mn2O3. SEM results showed that most of the metal oxide particles were evenly dispersed on the supports. Based on the experimental results, a potential reduction stage of CuO, Co3O4 and Mn2O3 was proposed for low-temperature hydrogen oxidation, which could be a potential application for space heating using safe hydrogen combustion

    Catalytic Conversion of Glycerol to Bio-Based Aromatics

    Get PDF
    Green application of biodiesel-derived glycerol will boost biodiesel production in terms of sustainability and economics. The glycerol to liquid fuels is a promising route that provides an additional energy source, which contributes significantly to energy transition besides biodiesel. This pathway could generate alkyl-aromatic hydrocarbons with a yield of ∼60%, oxygenates, and gases. MFI Zeolites (H-ZSM-5) catalysts are mainly used to propagate the aromatization pathway. This chapter presents the pathways, challenges, catalytic design, influences of catalyst acidity, metal addition, reaction condition, and catalysts deactivation on glycerol conversion to hydrocarbon fuels and aromatics. Studies revealed that time on stream, temperature, and weight hourly space velocity (range of 0.1–1 h−1) influences the benzene, toluene, and xylene BTX and benzene, toluene, ethylbenzene, and xylene BTEX yield. Acidity of the H-ZSM-5 could be tailored by metals, additives, and binders. Bronsted acidity promotes coke formation which results in reversible deactivation of the H-ZSM-5 catalyst. It is hoped that this study will promote intensified research on the use of glycerol for purposes of fuel generating and valuable products

    Multi-criteria decision analysis for the evaluation and screening of sustainable aviation fuel production pathways

    Get PDF
    The aviation sector, a significant greenhouse gas emitter, must lower its emissions to alleviate the climate change impact. Decarbonization can be achieved by converting low-carbon feedstock to sustainable aviation fuel (SAF). This study reviews SAF production pathways like hydroprocessed esters and fatty acids (HEFA), gasification and Fischer–Tropsch Process (GFT), Alcohol to Jet (ATJ), direct sugar to hydrocarbon (DSHC), and fast pyrolysis (FP). Each pathway's advantages, limitations, cost-effectiveness, and environmental impact are detailed, with reaction pathways, feedstock, and catalyst requirements. A multi-criteria decision framework (MCDS) was used to rank the most promising SAF production pathways. The results show the performance ranking order as HEFA > DSHC > FP > ATJ > GFT, assuming equal weight for all criteria

    Pathways for the Valorization of Animal and Human Waste to Biofuels, Sustainable Materials, and Value-Added Chemicals

    Get PDF
    Human and animal waste, including waste products originating from human or animal digestive systems, such as urine, feces, and animal manure, have constituted a nuisance to the environment. Inappropriate disposal and poor sanitation of human and animal waste often cause negative impacts on human health through contamination of the terrestrial environment, soil, and water bodies. Therefore, it is necessary to convert these wastes into useful resources to mitigate their adverse environmental effect. The present study provides an overview and research progress of different thermochemical and biological conversion pathways for the transformation of human- and animal-derived waste into valuable resources. The physicochemical properties of human and animal waste are meticulously discussed, as well as nutrient recovery strategies. In addition, a bibliometric analysis is provided to identify the trends in research and knowledge gaps. The results reveal that the USA, China, and England are the dominant countries in the research areas related to resource recovery from human or animal waste. In addition, researchers from the University of Illinois, the University of California Davis, the Chinese Academy of Sciences, and Zhejiang University are front runners in research related to these areas. Future research could be extended to the development of technologies for on-site recovery of resources, exploring integrated resource recovery pathways, and exploring different safe waste processing methods

    Pathways for the Valorization of Animal and Human Waste to Biofuels, Sustainable Materials and Value-Added Chemicals

    Get PDF
    Human and animal waste, including waste products originating from human or animal digestive systems such as urine, feces, and animal manure, have constituted a nuisance to the environment. Inappropriate disposal and poor sanitation of human and animal waste often cause negative impacts on human health through contamination of the terrestrial environment, soil, and water bodies. Therefore, it is necessary to convert these wastes into useful resources to mitigate their adverse environmental effect. The present study provides an overview and research progress of different thermochemical and biological conversion pathways for the transformation of human- and animal-derived waste into valuable resources. The physicochemical properties of human and animal waste are meticulously discussed as well as nutrient recovery strategies. In addition, a bibliometric analysis is provided to identify the trends in research and knowledge gaps. The results reveal that the U.S.A, China and England are the dominant countries in the research areas related to resource recovery from human or animal waste. In addition, researchers from the University of Illinois, the University of California Davis, the Chinese Academy of Science and Zhejiang University are front runners in research related to these areas. Future research should be centred on developing technologies for the on-site recovery of resources, exploring integrated resource recovery pathways, and exploring different safe waste processing methods

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century
    corecore