8 research outputs found

    Optimal Growth and Characterization of Cobalt Sulphide Thin Films Fabricated Using the Chemical Bath Deposition Technique

    Get PDF
    In this work, chemical bath deposition technique was used to deposit thin films of cobalt sulphide on glass substrate from the aqueous solution containing 1M of cobalt chloride, 1M of thiourea, 1M of ammonia and 1M of ethylene diamine tetra acetate (EDTA) which served as the complexing agent. The optical measurement was carried out on the deposited films using M501 single beam scanning UV/visible spectrophotometer. The results show that the films have high absorbance towards the UV-region whereas it recorded low transmittance value in the same region. The films also exhibited poor reflectance value towards the UV-region. The band gap energy value was found to be 1.72eV. The films were observed to have thickness value range of 1.122µm to 1.152µm. These properties made the material to be a good candidate for photovoltaic and opto-electronic applications. Keywords:Cobaltsulphide, absorbance, transmittance,reflectance, solid state property, band gap energy, thin fil

    Growth of Europium-Doped Magnesium Selenide Films by Electric Field-Assisted Spray Pyrolysis: Optical and Structural Analysis

    Get PDF
    Europium-doped MgSe films were deposited via electric field-assisted spray pyrolysis. The dopant concentration of the bulk solution of europium trioxide was 5wt. %. However, for doping the films at different substrate temperatures, volume percentage (vol. %) was employed at each instance of variation. Variation of spray temperature was around 573K and 673K (±0.3). Deposition occurred at optimized conditions. Spectra of absorption indicate poor absorption characteristics demonstrated by Europium-doped MgSe films in the ultra-violet region and very low absorption characteristics in the visible section. Absorption peaks were evident around 230nm, 240nm, 350nm and 365nm which confirmed defect states are inherent inside the crystal structure of the films. The films displayed high transparency and low reflection in the visible section at varying substrate temperatures. The high transparency revealed by the MgSe:Eu films in the visible section of the electromagnetic spectrum makes the material applicable as a coating layer in the manufacturing of transparent products. Band gap energies within the range of 2.49eV to 2.95eV corresponding to varying substrate temperatures (573K, 598K, 623K, 648K and 673K) and film thicknesses (2900nm, 2750nm, 2500nm, 2100nm and 200nm) were determined for the MgSe:Eu films. However, a clear observation shows that the band gaps of MgSe:Eu films are mainly dependent on thickness such that the obtained band gaps decreased with increasing thickness (band gap increases with thickness reduction). Structural analysis (XRD) studied at 10% and 40% Eu concentrations reveals a hexagonal (or wurzite) structure for the films with a distortion in crystallinity at higher dopant concentration (40 vol. %) and a resultant blue shift in the lattice constant from the bulk value. Multiple planes of reflection from XRD pattern of the deposited MgSe:Eu films indicate clearly that the films are polycrystalline. Surface morphology (SEM) confirms the highly strained nature and the presence of defect states within the crystal lattice of the Europium-doped MgSe films. Composition of MgSe:Eu films obtained by energy dispersive analysis x-ray (EDAX) confirms the growth of MgSe:Eu films

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Effect of cobalt on the photovoltaic properties of zinc selenide thin film deposited on fluorine-doped tin oxide (FTO) via electrochemical deposition technique

    No full text
    This paper provides a detailed report on the effect of molar concentration on structural, optical and electrical properties of cobalt doped zinc selenide (ZnSe:Co) thin film. The molar concentration Co dopant was varied within 0%, 0.1%, 0.2% and 0.3%. ZnSe:Co was synthesized using the electrodeposition method. Different characterization techniques such as X-ray diffractometry, scanning electron microscope and four-point probe were used to study the optical, surface morphology and electrical properties of ZnSe:Co. The XRD analysis revealed that both Co-doped and undoped ZnSe are crystalline materials. The crystalline structure of ZnSe is cubic but changes to a face-centred cubic structure upon introduction of Co dopant. ZnSe:Co showed excellent absorbance, optical conductivity and refractive index. The energy bandgap was observed to decrease from 2.2 to 2.0 ​eV as the molar percentage increased from 0.1 to 0.3%. The conductivity of the cobalt doped Zinc selenide was observed to be 1.4244 ​× ​1011, 1.6655 ​× ​1011, 1.6655 ​× ​1011, and 2.4929 ​× ​1011 (S/m) for film grown with 0%, 0.1%, 0.2% and 0.3% Co dopant respectively

    Filaria specific antibody response profiling in plasma from anti-retroviral naĂŻve Loa loa microfilaraemic HIV-1 infected people

    No full text
    Abstract Background In West and Central Africa areas of endemic Loa loa infections overlap with regions of high prevalence of human immunodeficiency virus type 1 (HIV-1) infections. Because individuals in this region are exposed to filarial parasites from birth, most HIV-1 infected individuals invariably also have a history of filarial parasite infection. Since HIV-1 infection both depletes immune system and maintains it in perpetual inflammation, this can hamper Loa loa filarial parasite mediated immune modulation, leading to enhanced loaisis. Methods In this study we have assessed in plasma from asymptomatic anti-retroviral (ARV) naïve Loa loa microfilaraemic HIV-1 infected people the filarial antibody responses specific to a filariasis composite antigen consisting of Wbgp29-BmR1-BmM14-WbSXP. The antibody responses specific to the filariasis composite antigen was determined by enzyme linked immunosorbent assay (ELISA) in plasma from ARV naïve Loa loa microfilaraemic HIV-1 infected participants. In addition the filarial antigen specific IgG antibody subclass profiles were also determined for both HIV-1 positive and negative people. Results Both Loa loa microfilaraemic HIV-1 positive and negative individuals showed significantly higher plasma levels of IgG1 (P < 0.0001), IgG2 (P < 0.0001) and IgM (P < 0.0001) relative to amicrofilaraemic participants. A significant increase in IgE (P < 0.0001) was observed exclusively in Loa loa microfilaraemic HIV-1 infected people. In contrast there was a significant reduction in the level of IgG4 (p < 0.0001) and IgG3 (P < 0.0001) in Loa loa microfilaraemic HIV-1 infected individuals. Conclusions Loa loa microfilaraemia in ARV naïve HIV-1 infected people through differential reduction of plasma levels of filarial antigen specific IgG3, IgG4 and a significant increase in plasma levels of filarial antigen specific IgE could diminish Loa loa mediated immune-regulation. This in effect can result to increase loaisis mediated immunopathology in antiretroviral naive HIV-1 infected people
    corecore