4 research outputs found

    Performance of the SD Bioline rapid diagnostic test as a good alternative to the detection of human African trypanosomiasis in Cameroon

    Get PDF
    Background: Case detection is essential for the management of human African trypanosomiasis (HAT), which is caused by Trypanosoma brucei gambiense. Prior to parasitological confirmation, routine screening using the card agglutination test for trypanosomiasis (CATT) is essential. Recently, individual rapid diagnostic tests (RDTs) for the serodiagnosis of HAT have been developed. Objective: The purpose of this study was to evaluate the contribution of SD Bioline HAT to the serological screening of human African trypanosomiasis in Cameroonian foci.Methods. Between June 2014 and January 2015, blood samples were collected during surveys in the foci of Campo, Yokadouma, and Fontem. The sensitivity (Se) and specificity (Sp) of SD Bioline HAT were determined using the CATT as the gold standard for the detection of specific antibodies against Trypanosoma brucei gambiense. Results: A total of 88 samples were tested: 59.1% (n=52) in Campo, 31.8% (n=28) in Yokadouma, and 9.1% (n=8) in Fontem. There were 61.4% (n=54) males and 38.4% (n=34) females, and the average age was 35.4 19.0 years. In probed foci, the overall seroprevalence was 11.4% (95% confidence interval: 6.3-19.7) with the CATT method and 18.2% (95% confidence interval: 11.5-27.2%) with the SD Bioline HAT RDT method. The SD Bioline HAT's Se and Sp were 80.0% and 89.7%, respectively. Conclusions: This study demonstrated that the overall performance of the SD Bioline HAT was comparable to that of the CATT, with high specificity in the serological detection of HAT

    Design and methods for a quasi-experimental pilot study to evaluate the impact of dual active ingredient insecticide-treated nets on malaria burden in five regions in sub-Saharan Africa

    Get PDF
    Background:Vector control tools have contributed significantly to a reduction in malaria burden since 2000, primar‑ily through insecticidal‑treated bed nets (ITNs) and indoor residual spraying. In the face of increasing insecticide resist‑ance in key malaria vector species, global progress in malaria control has stalled. Innovative tools, such as dual active ingredient (dual‑AI) ITNs that are effective at killing insecticide‑resistant mosquitoes have recently been introduced. However, large‑scale uptake has been slow for several reasons, including higher costs and limited evidence on their incremental effectiveness and cost‑effectiveness. The present report describes the design of several observational studies aimed to determine the effectiveness and cost‑effectiveness of dual‑AI ITNs, compared to standard pyre‑throid‑only ITNs, at reducing malaria transmission across a variety of transmission settings.Methods:Observational pilot studies are ongoing in Burkina Faso, Mozambique, Nigeria, and Rwanda, leveraging dual‑AI ITN rollouts nested within the 2019 and 2020 mass distribution campaigns in each country. Enhanced surveil‑lance occurring in select study districts include annual cross‑sectional surveys during peak transmission seasons, monthly entomological surveillance, passive case detection using routine health facility surveillance systems, and studies on human behaviour and ITN use patterns. Data will compare changes in malaria transmission and disease burden in districts receiving dual‑AI ITNs to similar districts receiving standard pyrethroid‑only ITNs over three years. The costs of net distribution will be calculated using the provider perspective including financial and economic costs, and a cost‑effectiveness analysis will assess incremental cost‑effectiveness ratios for Interceptor® G2, Royal Guard®, and piperonyl butoxide ITNs in comparison to standard pyrethroid‑only ITNs, based on incidence rate ratios calcu‑lated from routine data.Conclusions:Evidence of the effectiveness and cost‑effectiveness of the dual‑AI ITNs from these pilot studies will complement evidence from two contemporary cluster randomized control trials, one in Benin and one in Tanzania, to provide key information to malaria control programmes, policymakers, and donors to help guide decision‑making and planning for local malaria control and elimination strategies. Understanding the breadth of contexts where these dual‑AI ITNs are most effective and collecting robust information on factors influencing comparative effectiveness could improve uptake and availability and help maximize their impact

    Review of the Situation of Human African Trypanosomiasis in the Republic of Congo From the 1950s to 2020

    Get PDF
    Human African trypanosomiasis (HAT), despite considerable progress in the control, is still occurring in many countries in both west and central African regions. The HAT situation in the Republic of Congo has always been overshadowed by its neighbor the Democratic Republic of Congo where over 60% of all HAT cases occur. In the Republic of Congo, HAT cases have been significantly reduced to about 20 reported cases yearly and the disease is still prevalent in few foci across the country. Although continuous assessment of HAT situation in Congo is been led by the National Control Program for HAT, research on the vector, parasite, and vector control has received little attention. Because there have not been enough reviews summarizing key findings from studies conducted so far, there is still a poor understanding of the global situation of HAT in Congo. In order to achieve sustainable elimination of HAT in Congo a deep appraisal of HAT situation is required. The present study provides a review of studies conducted on HAT in the republic of Congo since the 1950s to date in order to identify gaps in knowledge and help consolidate the gains and progress towards the elimination of sleeping sickness

    Integration of Traditional Healers in Human African Trypanosomiasis Case Finding in Central Africa: A Quasi-Experimental Study

    No full text
    Background: Based on the premise that Africans in rural areas seek health care from traditional healers, this study investigated a collaborative model between traditional healers and the national Human African Trypanosomiasis (HAT) programs across seven endemic foci in seven central African countries by measuring the model’s contribution to HAT case finding. Method: Traditional healers were recruited and trained by health professionals to identify HAT suspects based on its basics signs and symptoms and to refer them to the National Sleeping Sickness Control Program (NSSCP) for testing and confirmatory diagnosis. Results: 35 traditional healers were recruited and trained, 28 finally participated in this study (80%) and referred 278 HAT suspects, of which 20 (7.19%) were CATT positive for the disease. Most cases originated from Bandundu (45%) in the Democratic Republic of Congo and from Ngabe (35%) in Congo. Twelve (4.32%) patients had confirmatory diagnosis. Although a statistically significant difference was not shown in terms of case finding (p = 0.56), traditional healers were able to refer confirmed HAT cases that were ultimately cared for by NCSSPs. Conclusion: Integrating traditional healers in the control program of HAT will likely enhance the detection of cases, thereby, eventually contributing to the elimination of HAT in the most affected communities
    corecore