290 research outputs found

    EVALUATION OF EXHAUST GAS FROM BIO-DIESEL FUEL ENGINE

    Full text link
    Joint Research on Environmental Science and Technology for the Eart

    Maintenance of glucose-sensitive insulin secretion of cryopreserved human islets with University of Wisconsin solution and ascorbic acid-2 glucoside

    Get PDF
    Normal human islet cells are an ideal source for pancreas-targeted cell therapies, but the availability of human donor pancreata for islet isolation is severely limited. To effectively utilize such scarce donor organs for cell therapies, it is crucial to develop an excellent isolation, effective cryopreservation, and efficient gene transfer techniques for the transportation of isolated cells. In the present study, we investigate the effect of University of Wisconsin (UW) solution and ascorbic acid-2 glucoside (AA2G) on the cryopreservation of human islets. We also evaluate the gene transfer efficiency of a lentiviral vector expressing the E. coli LacZ gene, Lt-NLS/LacZ, in human islets. Human islets were isolated with a standard digestion method at the University of Alberta. Isolated islets were transported to Japan for 40 h and then subjected to cryopreservation experiments. The following preservation solutions were tested: UW solution with 100 mug/mL of AA2G, UW solution, 100% fetal bovine serum (FBS), and CMRL supplemented with 10% FBS. Following three months of cryopreservation, the islets were thawed and analyzed for viability, glucose-sensitive insulin secretion, proinsulin gene expression profile, and in vivo engraftment. The islets were also subjected to monolayer formation with 804G-cell-line-derived extracellular matrix (ECM), followed by Lt-NLS/LacZ transduction. The viability, morphology, glucose-sensitive insulin secretion, proinsulin gene expression, and monolayer formation efficiency of the thawed cryopreserved islets are significantly better maintained by the use of UW solution. When AA2G (100 mug/mL) is combined with UW, such parameters are further improved. The adequate engraftment of UW + AA2G-cryopreserved human islets is achieved in the liver of nude mice. Efficient Lt-NLS/LacZ transduction is identified in monolayered islets cryopreserved with UW solution with AA2G. The present work demonstrates that the combination of UW solution with AA2G (100 mug/mL) would be a useful cryopreservation means for human islets. Human islets monolayer-cultured with 804G-derived ECM are efficiently transduced with a lentiviral vector Lt-NLS/LacZ

    A Randomized Placebo-Controlled Phase Ia Malaria Vaccine Trial of Two Virosome-Formulated Synthetic Peptides in Healthy Adult Volunteers

    Get PDF
    BACKGROUND AND OBJECTIVES: Influenza virosomes represent an innovative human-compatible antigen delivery system that has already proven its suitability for subunit vaccine design. The aim of the study was to proof the concept that virosomes can also be used to elicit high titers of antibodies against synthetic peptides. The specific objective was to demonstrate the safety and immunogenicity of two virosome-formulated P. falciparum protein derived synthetic peptide antigens given in two different doses alone or in combination. METHODOLOGY/PRINCIPAL FINDINGS: The design was a single blind, randomized, placebo controlled, dose-escalating study involving 46 healthy Caucasian volunteers aged 18-45 years. Five groups of 8 subjects received virosomal formulations containing 10 microg or 50 microg of AMA 49-CPE, an apical membrane antigen-1 (AMA-1) derived synthetic phospatidylethanolamine (PE)-peptide conjugate or 10 ug or 50 ug of UK39, a circumsporozoite protein (CSP) derived synthetic PE-peptide conjugate or 50 ug of both antigens each. A control group of 6 subjects received unmodified virosomes. Virosomal formulations of the antigens (designated PEV301 and PEV302 for the AMA-1 and the CSP virosomal vaccine, respectively) or unmodified virosomes were injected i. m. on days 0, 60 and 180. In terms of safety, no serious or severe adverse events (AEs) related to the vaccine were observed. 11/46 study participants reported 16 vaccine related local AEs. Of these 16 events, all being pain, 4 occurred after the 1(st), 7 after the 2(nd) and 5 after the 3(rd) vaccination. 6 systemic AEs probably related to the study vaccine were reported after the 1(st) injection, 10 after the 2(nd) and 6 after the 3(rd). Generally, no difference in the distribution of the systemic AEs between either the doses applied (10 respectively 50 microg) or the synthetic antigen vaccines (PEV301 and PEV302) used for immunization was found. In terms of immunogenicity, both PEV301 and PEV302 elicited already after two injections a synthetic peptide-specific antibody response in all volunteers immunized with the appropriate dose. In the case of PEV301 the 50 microg antigen dose was associated with a higher mean antibody titer and seroconversion rate than the 10 microg dose. In contrast, for PEV302 mean titer and seroconversion rate were higher with the lower dose. Combined delivery of PEV301 and PEV302 did not interfere with the development of an antibody response to either of the two antigens. No relevant antibody responses against the two malaria antigens were observed in the control group receiving unmodified virosomes. CONCLUSIONS: The present study demonstrates that three immunizations with the virosomal malaria vaccine components PEV301 or/and PEV302 (containing 10 microg or 50 microg of antigen) are safe and well tolerated. At appropriate antigen doses seroconversion rates of 100% were achieved. Two injections may be sufficient for eliciting an appropriate immune response, at least in individuals with pre-existing anti-malarial immunity. These results justify further development of a final multi-stage virosomal vaccine formulation incorporating additional malaria antigens. TRIAL REGISTRATION: ClinicalTrials.gov NCT00400101

    Ultrasonic-aided fabrication of gold nanofluids

    Get PDF
    A novel ultrasonic-aided one-step method for the fabrication of gold nanofluids is proposed in this study. Both spherical- and plate-shaped gold nanoparticles (GNPs) in the size range of 10-300 nm are synthesized. Subsequent purification produces well-controlled nanofluids with known solid and liquid contents. The morphology and properties of the nanoparticle and nanofluids are characterized by transmission electron microscopy, scanning electron microscope, energy dispersive X-ray spectroscope, X-ray diffraction spectroscopy, and dynamic light scattering, as well as effective thermal conductivities. The ultrasonication technique is found to be a very powerful tool in engineering the size and shape of GNPs. Subsequent property measurement shows that both particle size and particle shape play significant roles in determining the effective thermal conductivity. A large increase in effective thermal conductivity can be achieved (approximately 65%) for gold nanofluids using plate-shaped particles under low particle concentrations (i.e.764 μM/L)

    Computationally efficient 3D analytical magnet loss prediction in surface mounted permanent magnet machines

    Get PDF
    This study proposes a computationally efficient analytical method, for accurate prediction of three-dimensional (3D) eddy current loss in the rotor magnets of surface mounted permanent magnet (SPM) machines considering slotting effect. Subdomain model incorporating stator tooth tips is employed to generate the information on radial and tangential time-derivatives of 2D magnetic field (eddy current sources) within the magnet. The distribution of the eddy current sources in 3D is established for the magnets by applying the eddy current boundary conditions and the Coulomb gauge imposed on the current vector potential. The 3D eddy current distributions in magnets are derived analytically by employing the method of variable separation and the total eddy current loss in the magnets are subsequently established. The method is validated by 3D time-stepped finite element analysis for 18-slot, 8-pole and 12-slot, 8-pole permanent magnet machines. The eddy current loss variations in the rotor magnets with axial and circumferential number of segmentations are studied. The reduction of magnet eddy current loss is investigated with respect to harmonic wavelength of the source components to suggest a suitable segmentation for the rotor magnets in SPM machines

    Evaluation of a Rapid Immunochromatographic ODK-0901 Test for Detection of Pneumococcal Antigen in Middle Ear Fluids and Nasopharyngeal Secretions

    Get PDF
    Since the incidence of penicillin-resistant Streptococcus pneumoniae has been increasing at an astonishing rate throughout the world, the need for accurate and rapid identification of pneumococci has become increasingly important to determine the appropriate antimicrobial treatment. We have evaluated an immunochromatographic test (ODK-0901) that detects pneumococcal antigens using 264 middle ear fluids (MEFs) and 268 nasopharyngeal secretions (NPSs). A sample was defined to contain S. pneumoniae when optochin and bile sensitive alpha hemolytic streptococcal colonies were isolated by culture. The sensitivity and specificity of the ODK-0901 test were 81.4% and 80.5%, respectively, for MEFs from patients with acute otitis media (AOM). In addition, the sensitivity and specificity were 75.2% and 88.8%, respectively, for NPSs from patients with acute rhinosinusitis. The ODK-0901 test may provide a rapid and highly sensitive evaluation of the presence of S. pneumoniae and thus may be a promising method of identifying pneumococci in MEFs and NPSs

    Indocyanine Green (ICG) Lymphography Is Superior to Lymphoscintigraphy for Diagnostic Imaging of Early Lymphedema of the Upper Limbs

    Get PDF
    BACKGROUND: Secondary lymphedema causes swelling in limbs due to lymph retention following lymph node dissection in cancer therapy. Initiation of treatment soon after appearance of edema is very important, but there is no method for early diagnosis of lymphedema. In this study, we compared the utility of four diagnostic imaging methods: magnetic resonance imaging (MRI), computed tomography (CT), lymphoscintigraphy, and Indocyanine Green (ICG) lymphography. PATIENTS AND METHODS: Between April 2010 and November 2011, we examined 21 female patients (42 arms) with unilateral mild upper limb lymphedema using the four methods. The mean age of the patients was 60.4 years old (35-81 years old). Biopsies of skin and collecting lymphatic vessels were performed in 7 patients who underwent lymphaticovenous anastomosis. RESULTS: The specificity was 1 for all four methods. The sensitivity was 1 in ICG lymphography and MRI, 0.62 in lymphoscintigraphy, and 0.33 in CT. These results show that MRI and ICG lymphography are superior to lymphoscintigraphy or CT for diagnosis of lymphedema. In some cases, biopsy findings suggested abnormalities in skin and lymphatic vessels for which lymphoscintigraphy showed no abnormal findings. ICG lymphography showed a dermal backflow pattern in these cases. CONCLUSIONS: Our findings suggest the importance of dual diagnosis by examination of the lymphatic system using ICG lymphography and evaluation of edema in subcutaneous fat tissue using MRI

    Adeno-Associated Viral Vector-Mediated Transgene Expression Is Independent of DNA Methylation in Primate Liver and Skeletal Muscle

    Get PDF
    Recombinant adeno-associated viral (rAAV) vectors can support long-term transgene expression in quiescent tissues. Intramuscular (IM) administration of a single-stranded AAV vector (ssAAV) in the nonhuman primate (NHP) results in a peak protein level at 2–3 months, followed by a decrease over several months before reaching a steady-state. To investigate transgene expression and vector genome persistence, we previously demonstrated that rAAV vector genomes associate with histones and form a chromatin structure in NHP skeletal muscle more than one year after injection. In the mammalian nucleus, chromatin remodeling via epigenetic modifications plays key role in transcriptional regulation. Among those, CpG hyper-methylation of promoters is a known hallmark of gene silencing. To assess the involvement of DNA methylation on the transgene expression, we injected NHP via the IM or the intravenous (IV) route with a recombinant ssAAV2/1 vector. The expression cassette contains the transgene under the transcriptional control of the constitutive Rous Sarcoma Virus promoter (RSVp). Total DNA isolated from NHP muscle and liver biopsies from 1 to 37 months post-injection was treated with sodium bisulfite and subsequently analyzed by pyrosequencing. No significant CpG methylation of the RSVp was found in rAAV virions or in vector DNA isolated from NHP transduced tissues. Direct de novo DNA methylation appears not to be involved in repressing transgene expression in NHP after gene transfer mediated by ssAAV vectors. The study presented here examines host/vector interactions and the impact on transgene expression in a clinically relevant model

    Genomics of high molecular weight plasmids isolated from an on-farm biopurification system

    Get PDF
    The use of biopurification systems (BPS) constitutes an efficient strategy to eliminate pesticides from polluted wastewaters from farm activities. BPS environments contain a high microbial density and diversity facilitating the exchange of information among bacteria, mediated by mobile genetic elements (MGEs), which play a key role in bacterial adaptation and evolution in such environments. Here we sequenced and characterized high-molecular-weight plasmids from a bacterial collection of an on-farm BPS. The high-throughput-sequencing of the plasmid pool yielded a total of several Mb sequence information. Assembly of the sequence data resulted in six complete replicons. Using in silico analyses we identified plasmid replication genes whose encoding proteins represent 13 different Pfam families, as well as proteins involved in plasmid conjugation, indicating a large diversity of plasmid replicons and suggesting the occurrence of horizontal gene transfer (HGT) events within the habitat analyzed. In addition, genes conferring resistance to 10 classes of antimicrobial compounds and those encoding enzymes potentially involved in pesticide and aromatic hydrocarbon degradation were found. Global analysis of the plasmid pool suggest that the analyzed BPS represents a key environment for further studies addressing the dissemination of MGEs carrying catabolic genes and pathway assembly regarding degradation capabilities.Acknowledgements: This work was supported by the European Commission’s 7th Framework Programme (project Metaexplore 222625), the National Scientific and Technical Research Council of Argentina (Consejo Nacional de Investigaciones Científicas y Técnicas—CONICET, Argentina) and Ministry of Science Technology and Productive Innovation (Ministerio de Ciencia Tecnolología e Innovación Productiva—MinCyT, Argentina), projects PICT2013-0113, PICT2012-518 and PICT 2012-1719). MCM, FJA were supported by fellowships from CONICET. MFDP, MP, ML, GTT and AL are researchers at CONICET. The bioinformatics support of the BMBF-funded project (grant 031A533) within the German Network for Bioinformatics Infrastructure (de.NBI) is gratefully acknowledged. Work in FdlC group was supported by grant “Plasmid Offensive” BFU2014-55534-C2-1-P from Ministerio de Economía y Competitividad (MINECO, Spain), and Spanish Network for the Research in Infectious Diseases (REIPI RD12/0015/0019) from Instituto de Salud Carlos III (Spain)-co-financed by European Development Regional Fund. The authors are grateful to Paula Giménez and Silvana Tongiani for excellent technical assistance
    corecore