151 research outputs found
Reply to ``Comment on `Test of constancy of speed of light with rotating cryogenic optical resonators' ''
An improved analysis of the Michelson-Morley-type experiment by P. Antonini
et al. (Phys. Rev. A. 71, 050101 (2005)) yields the Robertson-Mansouri-Sexl
theory parameter combination and the Standard Model Extension theory parameter
.Comment: 2 page
Prospects for a Nuclear Optical Frequency Standard based on Thorium-229
The 7.6-eV-isomer of Thorium-229 offers the opportunity to perform high
resolution laser spectroscopy of a nuclear transition. We give a brief review
of the investigations of this isomer. The nuclear resonance connecting ground
state and isomer may be used as the reference of an optical clock of very high
accuracy using trapped and laser-cooled thorium ions, or in a compact
solid-state optical frequency standard of high stability.Comment: 5 pages, 1 figure; Proceedings of the 7th Symposium on Frequency
Standards and Metrology, 5-11 October 2008; reference added for section
Test of constancy of speed of light with rotating cryogenic optical resonators
A test of Lorentz invariance for electromagnetic waves was performed by
comparing the resonance frequencies of two optical resonators as a function of
orientation in space. In terms of the Robertson-Mansouri-Sexl theory, we obtain
, a ten-fold improvement compared to
the previous best results. We also set a first upper limit for a so far unknown
parameter of the Standard Model Extension test theory,
.Comment: 4 pages, 2 figures, accepted for publication Phys. Rev. A (2005
A generalized Ramsey excitation scheme with suppressed light shift
We experimentally investigate a recently proposed optical excitation scheme
[V.I. Yudin et al., Phys. Rev. A 82, 011804(R)(2010)] that is a generalization
of Ramsey's method of separated oscillatory fields and consists of a sequence
of three excitation pulses. The pulse sequence is tailored to produce a
resonance signal which is immune to the light shift and other shifts of the
transition frequency that are correlated with the interaction with the probe
field. We investigate the scheme using a single trapped 171Yb+ ion and excite
the highly forbidden 2S1/2-2F7/2 electric-octupole transition under conditions
where the light shift is much larger than the excitation linewidth, which is in
the Hertz range. The experiments demonstrate a suppression of the light shift
by four orders of magnitude and an immunity against its fluctuations.Comment: 5 pages, 4 figure
High-accuracy optical clock based on the octupole transition in 171Yb+
We experimentally investigate an optical frequency standard based on the 467
nm (642 THz) electric-octupole reference transition 2S1/2(F=0) -> F7/2(F=3) in
a single trapped 171Yb+ ion. The extraordinary features of this transition
result from the long natural lifetime and from the 4f136s2 configuration of the
upper state. The electric quadrupole moment of the 2F7/2 state is measured as
-0.041(5) e(a0)^2, where e is the elementary charge and a0 the Bohr radius. We
also obtain information on the differential scalar and tensorial components of
the static polarizability and of the probe light induced ac Stark shift of the
octupole transition. With a real-time extrapolation scheme that eliminates this
shift, the unperturbed transition frequency is realized with a fractional
uncertainty of 7.1x10^(-17). The frequency is measured as 642 121 496 772
645.15(52) Hz.Comment: 5 pages, 4 figure
Atomic clocks with suppressed blackbody radiation shift
We develop a nonstandard concept of atomic clocks where the blackbody
radiation shift (BBRS) and its temperature fluctuations can be dramatically
suppressed (by one to three orders of magnitude) independent of the
environmental temperature. The suppression is based on the fact that in a
system with two accessible clock transitions (with frequencies v1 and v2) which
are exposed to the same thermal environment, there exists a "synthetic"
frequency v_{syn} (v1-e12 v2) largely immune to the BBRS. As an example, it is
shown that in the case of ion 171Yb+ it is possible to create a clock in which
the BBRS can be suppressed to the fractional level of 10^{-18} in a broad
interval near room temperature (300\pm 15 K). We also propose a realization of
our method with the use of an optical frequency comb generator stabilized to
both frequencies v1 and v2. Here the frequency v_{syn} is generated as one of
the components of the comb spectrum and can be used as an atomic standard.Comment: 5 pages, 2 figure
- …