12 research outputs found

    Effects of Postprandial Body Position on Gastrointestinal Motility, the Autonomic Nervous System and Subjective Comfort

    Get PDF
    We examined postprandial body positions’ effects on gastrointestinal motility, the autonomic nervous system and subjective comfort, i.e., whether lowering the head after a meal is beneficial for gastrointestinal motility and the prevention of pressure ulcer. We examined 10 healthy subjects and compared 3 body positions: (1) Seated upright. (2) Lying on a bed with the head at 60° and knees up by 20° (60° position). (3) Identical to (2) until post-meal; the head was then lowered to 30° (60°-30° position). Gastrointestinal motility was assessed as gastrointestinal sounds measured by sound-editing software. Digital plethysmography assessed autonomic nerve function as heart rate variability. The pressure ulcer risk was estimated as subjective comfort/discomfort using a visual analog scale. Gastrointestinal sounds increased post-meal. The 60°-30° position showed the highest number of sounds and longest cumulative sound duration. Post-meal, sympathetic activation was suggested in the 60° position, whereas vagal activity was relatively preserved in the 60°-30° position. The 60°-30° position was the most comfortable, and the 60° position was least comfortable. Lowering the head after a meal is beneficial to augment gastrointestinal motility and decrease the pressure ulcer risk. The 60° head-up position increases the pressure ulcer risk

    Comparison of Count Normalization Methods for Statistical Parametric Mapping Analysis Using a Digital Brain Phantom Obtained from Fluorodeoxyglucose-positron Emission Tomography

    Get PDF
    Objective(s): Alternative normalization methods were proposed to solve the biased information of SPM in the study of neurodegenerative disease. The objective of this study was to determine the most suitable count normalization method for SPM analysis of a neurodegenerative disease based on the results of different count normalization methods applied on a prepared digital phantom similar to one obtained using fluorodeoxyglucose-positron emission tomography (FDG-PET) data of a brain with a known neurodegenerative condition.Methods: Digital brain phantoms, mimicking mild and intermediate neurodegenerative disease conditions, were prepared from the FDG-PET data of 11 healthy subjects. SPM analysis was performed on these simulations using different count normalization methods. Results: In the slight-decrease phantom simulation, the Yakushev method correctly visualized wider areas of slightly decreased metabolism with the smallest artifacts of increased metabolism. Other count normalization methods were unable to identify this slightly decreases and produced more artifacts. The intermediate-decreased areas were well visualized by all methods. The areas surrounding the grey matter with the slight decreases were not visualized withthe GM and VOI count normalization methods but with the Andersson. The Yakushev method well visualized these areas. Artifacts were present in all methods. When the number of reference area extraction was increased, the Andersson method better-captured the areas with decreased metabolism and reduced the artifacts of increased metabolism. In the Yakushev method, increasing the threshold for the reference area extraction reduced such artifacts.Conclusion: The Yakushev method is the most suitable count normalization method for the SPM analysis of neurodegenerative disease

    β-Endorphin Mediates the Development and Instability of Atherosclerotic Plaques

    No full text
    β-Endorphin, an endogenous opioid peptide, and its μ-opioid receptor are expressed in brain, liver, and peripheral tissues. β-Endorphin induces endothelial dysfunction and is related to insulin resistance. We clarified the effects of β-endorphin on atherosclerosis. We assessed the effects of β-endorphin on the inflammatory response and monocyte adhesion in human umbilical vein endothelial cells (HUVECs), foam cell formation, and the inflammatory phenotype in THP-1 monocyte-derived macrophages, and migration and proliferation of human aortic smooth muscle cells (HASMCs) in vitro. We also assessed the effects of β-endorphin on aortic lesions in Apoe−/− mice in vivo. The μ-opioid receptor (OPRM1) was expressed in THP-1 monocytes, macrophages, HASMCs, HUVECs, and human aortic endothelial cells. β-Endorphin significantly increased THP-1 monocyte adhesion to HUVECs and induced upregulation of intercellular adhesion molecule-1, vascular cell adhesion molecule-1, and E-selectin via nuclear factor-κB (NF-κB) and p38 phosphorylation in HUVECs. β-Endorphin significantly increased HUVEC proliferation and enhanced oxidized low-density lipoprotein-induced foam cell formation in macrophages. β-Endorphin also significantly shifted the macrophage phenotype to proinflammatory M1 rather than anti-inflammatory M2 via NF-κB phosphorylation during monocyte-macrophage differentiation and increased migration and apoptosis in association with c-jun-N-terminal kinase, p38, and NF-κB phosphorylation in HASMCs. Chronic β-endorphin infusion into Apoe−/− mice significantly aggravated the development of aortic atherosclerotic lesions, with an increase in vascular inflammation and the intraplaque macrophage/smooth muscle cell ratio, an index of plaque instability. Our study provides the first evidence that β-endorphin contributes to the acceleration of the progression and instability of atheromatous plaques. Thus, μ-opioid receptor antagonists may be useful for the prevention and treatment of atherosclerosis

    External validation of the HACOR score and ROX index for predicting treatment failure in patients with coronavirus disease 2019 pneumonia managed on high-flow nasal cannula therapy: a multicenter retrospective observational study in Japan

    No full text
    Abstract Background The HACOR score for predicting treatment failure includes vital signs and acid–base balance factors, whereas the ROX index only considers the respiratory rate, oxygen saturation, and fraction of inspired oxygen (FiO2). We aimed to externally validate the HACOR score and ROX index for predicting treatment failure in patients with coronavirus disease 2019 (COVID-19) on high-flow nasal cannula (HFNC) therapy in Japan. Methods This retrospective, observational, multicenter study included patients, aged ≥ 18 years, diagnosed with COVID-19 and treated with HFNC therapy between January 16, 2020, and March 31, 2022. The HACOR score and ROX index were calculated at 2, 6, 12, 24, and 48 h after stating HFNC therapy. The primary outcome was treatment failure (requirement for intubation or occurrence of death within 7 days). We calculated the area under the receiver operating characteristic curve (AUROC) and assessed the diagnostic performance of these indicators. The 2-h time-point prediction was considered the primary analysis and that of other time-points as the secondary analysis. We also assessed 2-h time-point sensitivity and specificity using previously reported cutoff values (HACOR score > 5, ROX index < 2.85). Results We analyzed 300 patients from 9 institutions (median age, 60 years; median SpO2/FiO2 ratio at the start of HFNC therapy, 121). Within 7 days of HFNC therapy, treatment failure occurred in 127 (42%) patients. The HACOR score and ROX index at the 2-h time-point exhibited AUROC discrimination values of 0.63 and 0.57 (P = 0.24), respectively. These values varied with temporal changes—0.58 and 0.62 at 6 h, 0.70 and 0.68 at 12 h, 0.68 and 0.69 at 24 h, and 0.75 and 0.75 at 48 h, respectively. The 2-h time-point sensitivity and specificity were 18% and 91% for the HACOR score, respectively, and 3% and 100% for the ROX index, respectively. Visual calibration assessment revealed well calibrated HACOR score, but not ROX index. Conclusions In COVID-19 patients receiving HFNC therapy in Japan, the predictive performance of the HACOR score and ROX index at the 2-h time-point may be inadequate. Furthermore, clinicians should be mindful of time-point scores owing to the variation of the models’ predictive performance with the time-point. Trial registration UMIN (registration number: UMIN000050024, January 13, 2023
    corecore