3,180 research outputs found

    Observations and models for needle-tissue interactions

    Get PDF
    The asymmetry of a bevel-tip needle results in the needle naturally bending when it is inserted into soft tissue. In this study we present a mechanics-based model that calculates the deflection of the needle embedded in an elastic medium. Microscopic observations for several needle- gel interactions were used to characterize the interactions at the bevel tip and along the needle shaft. The model design was guided by microscopic observations of several needle- gel interactions. The energy-based model formulation incor- porates tissue-specific parameters such as rupture toughness, nonlinear material elasticity, and interaction stiffness, and needle geometric and material properties. Simulation results follow similar trends (deflection and radius of curvature) to those observed in macroscopic experimental studies of a robot- driven needle interacting with different kinds of gels. These results contribute to a mechanics-based model of robotic needle steering, extending previous work on kinematic models

    Dynamic critical phenomena in the AdS/CFT duality

    Full text link
    In critical phenomena, singular behaviors arise not only for thermodynamic quantities but also for transport coefficients. We study this dynamic critical phenomenon in the AdS/CFT duality. We consider black holes with a single R-charge in various dimensions and compute the R-charge diffusion in the linear perturbations. In this case, the black holes belong to model B according to the classification of Hohenberg and Halperin.Comment: 17 pages, ReVTeX4; v2: added references and discussio

    Characterization of the differentially methylated region of the Impact gene that exhibits Glires-specific imprinting

    Get PDF
    Comparative genomic analysis of the Impact locus, which is imprinted in Glires but not in other mammals, reveals features required for genomic imprinting

    Absence of Hybridization Gap in Heavy Electron Systems and Analysis of YbAl3 in terms of Nearly Free Electron Conduction Band

    Full text link
    In the analysis of the heavy electron systems, theoretical models with c-f hybridization gap are often used. We point out that such a gap does not exist and the simple picture with the hybridization gap is misleading in the metallic systems, and present a correct picture by explicitly constructing an effective band model of YbAl_3. Hamiltonian consists of a nearly free electron model for conduction bands which hybridize with localized f-electrons, and includes only a few parameters. Density of states, Sommerfeld coefficient, f-electron number and optical conductivity are calculated and compared with the band calculations and the experiments.Comment: 9 pages, 9 figures, submitted to J. Phys. Soc. Jp
    • …
    corecore