32 research outputs found

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    PEDOT:PSS-mediated semiconductor wafer bonding for built-in middle subcells in multijunction solar cells

    No full text
    We propose and experimentally demonstrate a novel concept of semiconductor wafer bonding that simultaneously realizes bond formation and solar cell implementation. Firstly, a semiconductor bonding technique mediated by poly(3, 4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) is developed. By utilizing the PEDOT:PSS-mediated bonding, we subsequently fabricate an InP/Si heterostructure. The PEDOT:PSS/Si heterojunction derivatively formed at the bonded interface is then demonstrated to operate as a photovoltaic device. The prepared InP/PEDOT:PSS/Si heterostructure can thus be regarded as a prototype architecture representing an intermediate section of a multijunction solar cell with a built-in subcell. Our facile semiconductor bonding scheme mediated by functional agents could lead to low-cost, high-throughput production of high-efficiency multijunction solar cells

    Comparison of L- and D-Amino Acids for Bacterial Imaging in Lung Infection Mouse Model

    No full text
    The effectiveness of L- and D-amino acids for detecting the early stage of infection in bacterial imaging was compared. We evaluated the accumulation of 3H-L-methionine (Met), 3H-D-Met, 3H-L-alanine (Ala), and 3H-D-Ala in E. coli EC-14 and HaCaT cells. Biological distribution was assessed in control and lung-infection-model mice with EC-14 using 3H-L- and D-Met, and 18F-FDG. A maximum accumulation of 3H-L- and D-Met, and 3H-L- and D-Ala occurred in the growth phase of EC-14 in vitro. The accumulation of 3H-L-Met and L-Ala was greater than that of 3H-D-Met and D-Ala in both EC-14 and HaCaT cells. For all radiotracers, the accumulation was greater in EC-14 than in HaCaT cells at early time points. The accumulation was identified at 5 min after injection in EC-14, whereas the accumulation gradually increased in HaCaT cells over time. There was little difference in biodistribution between 3H-L-and D-Met except in the brain. 3H-L- and D-Met were sensitive for detecting areas of infection after the spread of bacteria throughout the body, whereas 18F-FDG mainly detected primary infection areas. Therefore, 11C-L- and D-Met, radioisotopes that differ only in terms of 3H labeling, could be superior to 18F-FDG for detecting bacterial infection in lung-infection-model mice

    PEDOT:PSS-mediated semiconductor wafer bonding for built-in middle subcells in multijunction solar cells

    No full text
    We propose and experimentally demonstrate a novel concept of semiconductor wafer bonding that simultaneously realizes bond formation and solar cell implementation. Firstly, a semiconductor bonding technique mediated by poly(3, 4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) is developed. By utilizing the PEDOT:PSS-mediated bonding, we subsequently fabricate an InP/Si heterostructure. The PEDOT:PSS/Si heterojunction derivatively formed at the bonded interface is then demonstrated to operate as a photovoltaic device. The prepared InP/PEDOT:PSS/Si heterostructure can thus be regarded as a prototype architecture representing an intermediate section of a multijunction solar cell with a built-in subcell. Our facile semiconductor bonding scheme mediated by functional agents could lead to low-cost, high-throughput production of high-efficiency multijunction solar cells

    <sup>123</sup>I-BMIPP, a Radiopharmaceutical for Myocardial Fatty Acid Metabolism Scintigraphy, Could Be Utilized in Bacterial Infection Imaging

    No full text
    In this study, we evaluated the use of 15-(4-123I-iodophenyl)-3(R,S)-methylpentadecanoic acid (123I-BMIPP) to visualize fatty acid metabolism in bacteria for bacterial infection imaging. We found that 123I-BMIPP, which is used for fatty acid metabolism scintigraphy in Japan, accumulated markedly in Escherichia coli EC-14 similar to 18F-FDG, which has previously been studied for bacterial imaging. To elucidate the underlying mechanism, we evaluated changes in 123I-BMIPP accumulation under low-temperature conditions and in the presence of a CD36 inhibitor. The uptake of 123I-BMIPP by EC-14 was mediated via the CD36-like fatty-acid-transporting membrane protein and accumulated by fatty acid metabolism. In model mice infected with EC-14, the biological distribution and whole-body imaging were assessed using 123I-BMIPP and 18F-FDG. The 123I-BMIPP biodistribution study showed that, 8 h after infection, the ratio of 123I-BMIPP accumulated in infected muscle to that in control muscle was 1.31 at 60 min after 123I-BMIPP injection. In whole-body imaging 1.5 h after 123I-BMIPP administration and 9.5 h after infection, infected muscle exhibited a 1.33-times higher contrast than non-infected muscle. Thus, 123I-BMIPP shows potential for visualizing fatty acid metabolism of bacteria for imaging bacterial infections

    Serum syndecan-1 concentration in hemolysis, elevated liver enzymes, and low platelets syndrome: A case report

    Get PDF
    BackgroundHemolysis, elevated liver enzymes, and low platelets (HELLP) syndrome occurs in pregnant and postpartum individuals. We observed serum syndecan-1 (SDC-1) levels, which is a component of the glycocalyx, in a patient with HELLP syndrome from admission to the postpartum period and examined their association as reflecting the pathophysiology related to endothelial injury.Case presentationA 31-year-old primiparous female patient without a previous medical history at a gestational age of 37 weeks and 6 days was transferred to our hospital the morning after a visit to a previous hospital with headache and nausea. Elevated transaminase, platelet count, and proteinuria were noted. Head magnetic resonance imaging revealed a caudate nucleus hemorrhage and posterior reversible encephalopathy syndrome. After she delivered her newborn through an emergency cesarean section, she was admitted to the intensive care unit. On day 4 post-delivery, the patient’s D-dimer concentration was elevated, and contrast-enhanced computed tomography was performed. The results indicated pulmonary embolism, and heparin administration was initiated. The serum SDC-1 level was highest on day 1 post-delivery and quickly decreased subsequently; however, it remained elevated during the postpartum period. Her condition gradually improved, and she was extubated on day 6 and discharged from the ICU on day 7 post-delivery.ConclusionWe measured SDC-1 concentration in a patient with HELLP syndrome and found that the clinical course correlated with SDC-1 levels, indicating that SDC-1 is elevated immediately before and after pregnancy termination in patients with HELLP syndrome. Therefore, SDC-1 fluctuations, combined with the elevation of the D-dimer level, may be a potential marker for the early detection of HELLP syndrome and estimation of the syndrome’s severity in the future
    corecore