608 research outputs found

    Cheating is evolutionarily assimilated with cooperation in the continuous snowdrift game

    Get PDF
    It is well known that in contrast to the Prisoner's Dilemma, the snowdrift game can lead to a stable coexistence of cooperators and cheaters. Recent theoretical evidence on the snowdrift game suggests that gradual evolution for individuals choosing to contribute in continuous degrees can result in the social diversification to a 100% contribution and 0% contribution through so-called evolutionary branching. Until now, however, game-theoretical studies have shed little light on the evolutionary dynamics and consequences of the loss of diversity in strategy. Here we analyze continuous snowdrift games with quadratic payoff functions in dimorphic populations. Subsequently, conditions are clarified under which gradual evolution can lead a population consisting of those with 100% contribution and those with 0% contribution to merge into one species with an intermediate contribution level. The key finding is that the continuous snowdrift game is more likely to lead to assimilation of different cooperation levels rather than maintenance of diversity. Importantly, this implies that allowing the gradual evolution of cooperative behavior can facilitate social inequity aversion in joint ventures that otherwise could cause conflicts that are based on commonly accepted notions of fairness.Comment: 30 pages, 3 tables, 5 figure

    Statistical mechanical evaluation of spread spectrum watermarking model with image restoration

    Get PDF
    In cases in which an original image is blind, a decoding method where both the image and the messages can be estimated simultaneously is desirable. We propose a spread spectrum watermarking model with image restoration based on Bayes estimation. We therefore need to assume some prior probabilities. The probability for estimating the messages is given by the uniform distribution, and the ones for the image are given by the infinite range model and 2D Ising model. Any attacks from unauthorized users can be represented by channel models. We can obtain the estimated messages and image by maximizing the posterior probability. We analyzed the performance of the proposed method by the replica method in the case of the infinite range model. We first calculated the theoretical values of the bit error rate from obtained saddle point equations and then verified them by computer simulations. For this purpose, we assumed that the image is binary and is generated from a given prior probability. We also assume that attacks can be represented by the Gaussian channel. The computer simulation retults agreed with the theoretical values. In the case of prior probability given by the 2D Ising model, in which each pixel is statically connected with four-neighbors, we evaluated the decoding performance by computer simulations, since the replica theory could not be applied. Results using the 2D Ising model showed that the proposed method with image restoration is as effective as the infinite range model for decoding messages. We compared the performances in a case in which the image was blind and one in which it was informed. The difference between these cases was small as long as the embedding and attack rates were small. This demonstrates that the proposed method with simultaneous estimation is effective as a watermarking decoder

    The Effect of Incentives and Meta-incentives on the Evolution of Cooperation

    Get PDF
    Although positive incentives for cooperators and/or negative incentives for free-riders in social dilemmas play an important role in maintaining cooperation, there is still the outstanding issue of who should pay the cost of incentives. The second-order free-rider problem, in which players who do not provide the incentives dominate in a game, is a well-known academic challenge. In order to meet this challenge, we devise and analyze a meta-incentive game that integrates positive incentives (rewards) and negative incentives (punishments) with second-order incentives, which are incentives for other players' incentives. The critical assumption of our model is that players who tend to provide incentives to other players for their cooperative or non-cooperative behavior also tend to provide incentives to their incentive behaviors. In this paper, we solve the replicator dynamics for a simple version of the game and analytically categorize the game types into four groups. We find that the second-order free-rider problem is completely resolved without any third-order or higher (meta) incentive under the assumption. To do so, a second-order costly incentive, which is given individually (peer-to-peer) after playing donation games, is needed. The paper concludes that (1) second-order incentives for first-order reward are necessary for cooperative regimes, (2) a system without first-order rewards cannot maintain a cooperative regime, (3) a system with first-order rewards and no incentives for rewards is the worst because it never reaches cooperation, and (4) a system with rewards for incentives is more likely to be a cooperative regime than a system with punishments for incentives when the cost-effect ratio of incentives is sufficiently large. This solution is general and strong in the sense that the game does not need any centralized institution or proactive system for incentives. (authors' abstract

    Widely Extended [OIII] 88 um Line Emission around the 30 Doradus Region Revealed with AKARI FIS-FTS

    Full text link
    We present the distribution map of the far-infrared [OIII] 88um line emission around the 30 Doradus (30 Dor) region in the Large Magellanic Cloud obtained with the Fourier Transform Spectrometer of the Far-Infrared Surveyor onboard AKARI. The map reveals that the [OIII] emission is widely distributed by more than 10' around the super star cluster R136, implying that the 30 Dor region is affluent with interstellar radiation field hard enough to ionize O^{2+}. The observed [OIII] line intensities are as high as (1-2) x 10^{-6} W m^{-2} sr^{-1} on the peripheral regions 4'-5' away from the center of 30 Dor, which requires gas densities of 60-100 cm^{-3}. However the observed size of the distribution of the [OIII] emission is too large to be explained by massive stars in the 30 Dor region enshrouded by clouds with the constant gas density of 10^2 cm^{-3}. Therefore the surrounding structure is likely to be highly clumpy. We also find a global correlation between the [OIII] and the far-infrared continuum emission, suggesting that the gas and dust are well mixed in the highly-ionized region where the dust survives in clumpy dense clouds shielded from the energetic photons.Comment: 17 pages, 9 figures, accepted for publication in Publications of the Astronomical Society of Japan (PASJ
    corecore