966 research outputs found

    Disorder, spin-orbit, and interaction effects in dilute Ga1−xMnxAs{\rm Ga}_{1-x}{\rm Mn}_x{\rm As}

    Full text link
    We derive an effective Hamiltonian for Ga1−xMnxAs{\rm Ga}_{1-x}{\rm Mn}_x {\rm As} in the dilute limit, where Ga1−xMnxAs{\rm Ga}_{1-x}{\rm Mn}_x {\rm As} can be described in terms of spin F=3/2F=3/2 polarons hopping between the {\rm Mn} sites and coupled to the local {\rm Mn} spins. We determine the parameters of our model from microscopic calculations using both a variational method and an exact diagonalization within the so-called spherical approximation. Our approach treats the extremely large Coulomb interaction in a non-perturbative way, and captures the effects of strong spin-orbit coupling and Mn positional disorder. We study the effective Hamiltonian in a mean field and variational calculation, including the effects of interactions between the holes at both zero and finite temperature. We study the resulting magnetic properties, such as the magnetization and spin disorder manifest in the generically non-collinear magnetic state. We find a well formed impurity band fairly well separated from the valence band up to xactive≲0.015x_{\rm active} \lesssim 0.015 for which finite size scaling studies of the participation ratios indicate a localization transition, even in the presence of strong on-site interactions, where xactive<xnomx_{\rm active}<x_{\rm nom} is the fraction of magnetically active Mn. We study the localization transition as a function of hole concentration, Mn positional disorder, and interaction strength between the holes.Comment: 15 pages, 12 figure

    Combined approach of density functional theory and quantum Monte Carlo method to electron correlation in dilute magnetic semiconductors

    Full text link
    We present a realistic study for electronic and magnetic properties in dilute magnetic semiconductor (Ga,Mn)As. A multi-orbital Haldane-Anderson model parameterized by density-functional calculations is presented and solved with the Hirsch-Fye quantum Monte Carlo algorithm. Results well reproduce experimental results in the dilute limit. When the chemical potential is located between the top of the valence band and an impurity bound state, a long-range ferromagnetic correlations between the impurities, mediated by antiferromagnetic impurity-host couplings, are drastically developed. We observe an anisotropic character in local density of states at the impurity-bound-state energy, which is consistent with the STM measurements. The presented combined approach thus offers a firm starting point for realistic calculations of the various family of dilute magnetic semiconductors.Comment: 5 pages, 4 figure

    Observation of a multimode plasma response and its relationship to density pumpout and edge-localized mode suppression

    Get PDF
    Density pumpout and edge-localized mode (ELM) suppression by applied n=2 magnetic fields in low-collisionality DIII-D plasmas are shown to be correlated with the magnitude of the plasma response driven on the high-field side (HFS) of the magnetic axis but not the low-field side (LFS) midplane. These distinct responses are a direct measurement of a multimodal magnetic plasma response, with each structure preferentially excited by a different n=2 applied spectrum and preferentially detected on the LFS or HFS. Ideal and resistive magneto-hydrodynamic (MHD) calculations find that the LFS measurement is primarily sensitive to the excitation of stable kink modes, while the HFS measurement is primarily sensitive to resonant currents (whether fully shielding or partially penetrated). The resonant currents are themselves strongly modified by kink excitation, with the optimal applied field pitch for pumpout and ELM suppression significantly differing from equilibrium field alignment.This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences, using the DIII-D National Fusion Facility, a DOE Office of Science user facility, under Awards No. DE-FC02-04ER54698, No. DE-AC02-09CH11466, No. DE-FG02-04ER54761, No. DE-AC05-06OR23100, No. DE-SC0001961, and No. DE-AC05-00OR22725. S. R. H. was supported by AINSE and ANSTO

    Nature of magnetic coupling between Mn ions in as-grown Ga1−x_{1-x}Mnx_{x}As studied by x-ray magnetic circular dichroism

    Full text link
    The magnetic properties of as-grown Ga1−x_{1-x}Mnx_{x}As have been investigated by the systematic measurements of temperature and magnetic field dependent soft x-ray magnetic circular dichroism (XMCD). The {\it intrinsic} XMCD intensity at high temperatures obeys the Curie-Weiss law, but residual spin magnetic moment appears already around 100 K, significantly above Curie temperature (TCT_C), suggesting that short-range ferromagnetic correlations are developed above TCT_C. The present results also suggest that antiferromagnetic interaction between the substitutional and interstitial Mn (Mnint_{int}) ions exists and that the amount of the Mnint_{int} affects TCT_C.Comment: 4 pages, 4 figure

    Single-Band Model for Diluted Magnetic Semiconductors: Dynamical and Transport Properties and Relevance of Clustered States

    Full text link
    Dynamical and transport properties of a simple single-band spin-fermion lattice model for (III,Mn)V diluted magnetic semiconductors (DMS) is here discussed using Monte Carlo simulations. This effort is a continuation of previous work (G. Alvarez, Phys. Rev. Lett. 89, 277202 (2002)) where the static properties of the model were studied. The present results support the view that the relevant regime of J/t (standard notation) is that of intermediate coupling, where carriers are only partially trapped near Mn spins, and locally ordered regions (clusters) are present above the Curie temperature T_C. This conclusion is based on the calculation of the resistivity vs. temperature, that shows a soft metal to insulator transition near T_C, as well on the analysis of the density-of-states and optical conductivity. In addition, in the clustered regime a large magnetoresistance is observed in simulations. Formal analogies between DMS and manganites are also discussed.Comment: Revtex4, 20 figures. References updated, minor changes to figures and tex

    Spin Waves in Disordered III-V Diluted Magnetic Semiconductors

    Full text link
    We propose a new scheme for numerically computing collective-mode spectra for large-size systems, using a reformulation of the Random Phase Approximation. In this study, we apply this method to investigate the spectrum and nature of the spin-waves of a (III,Mn)V Diluted Magnetic Semiconductor. We use an impurity band picture to describe the interaction of the charge carriers with the local Mn spins. The spin-wave spectrum is shown to depend sensitively on the positional disorder of the Mn atoms inside the host semiconductor. Both localized and extended spin-wave modes are found. Unusual spin and charge transport is implied.Comment: 14 pages, including 11 figure

    Ultrahigh field electron cyclotron resonance absorption in In1−x_{1-x}Mnx_xAs films

    Full text link
    We have carried out an ultrahigh field cyclotron resonance study of nn-type In1−x_{1-x}Mnx_xAs films, with Mn composition xx ranging from 0 to 12%, grown on GaAs by low temperature molecular beam epitaxy. We observe that the electron cyclotron resonance peak shifts to lower field with increasing xx. A detailed comparison of experimental results with calculations based on a modified Pidgeon-Brown model allows us to estimate the {\em s-d} and {\em p-d} exchange coupling constants, α\alpha and β\beta, for this important III-V dilute magnetic semiconductor system.Comment: 4 pages, 4 figure

    Electronic structure and magnetism of Mn doped GaN

    Full text link
    Mn doped semiconductors are extremely interesting systems due to their novel magnetic properties suitable for the spintronics applications. It has been shown recently by both theory and experiment that Mn doped GaN systems have a very high Curie temperature compared to that of Mn doped GaAs systems. To understand the electronic and magnetic properties, we have studied Mn doped GaN system in detail by a first principles plane wave method. We show here the effect of varying Mn concentration on the electronic and magnetic properties. For dilute Mn concentration, dd states of Mn form an impurity band completely separated from the valence band states of the host GaN. This is in contrast to the Mn doped GaAs system where Mn dd states in the gap lie very close to the valence band edge and hybridizes strongly with the delocalized valence band states. To study the effects of electron correlation, LSDA+U calculations have been performed. Calculated exchange interaction in (Mn,Ga)N is short ranged in contrary to that in (Mn,Ga)As where the strength of the ferromagnetic coupling between Mn spins is not decreased substantially for large Mn-Mn separation. Also, the exchange interactions are anisotropic in different crystallographic directions due to the presence or absence of connectivity between Mn atoms through As bonds.Comment: 6 figures, submitted to Phys. Rev.

    Localized states in 2D semiconductors doped with magnetic impurities in quantizing magnetic field

    Full text link
    A theory of magnetic impurities in a 2D electron gas quantized by a strong magnetic field is formulated in terms of Friedel-Anderson theory of resonance impurity scattering. It is shown that this scattering results in an appearance of bound Landau states with zero angular moment between the Landau subbands. The resonance scattering is spin selective, and it results in a strong spin polarization of Landau states, as well as in a noticeable magnetic field dependence of the gg factor and the crystal field splitting of the impurity dd levels.Comment: 12 pages, 4 figures Submitted to Physical Review B This version is edited and updated in accordance with recent experimental dat

    Ferromagnetism in Diluted Magnetic Semiconductor Heterojunction Systems

    Full text link
    Diluted magnetic semiconductors (DMSs), in which magnetic elements are substituted for a small fraction of host elements in a semiconductor lattice, can become ferromagnetic when doped. In this article we discuss the physics of DMS ferromagnetism in systems with semiconductor heterojunctions. We focus on the mechanism that cause magnetic and magnetoresistive properties to depend on doping profiles, defect distributions, gate voltage, and other system parameters that can in principle be engineered to yield desired results.Comment: 12 pages, 7 figures, review, special issue of Semicon. Sci. Technol. on semiconductor spintronic
    • …
    corecore