1,150 research outputs found

    Generality of rotating partial cavitation in two-dimensional cascades

    Full text link
    Numerical simulations of 2-dimensional (2D) unsteady cavitating flows were carried out under various conditions of the number of blades, incidence angles and cavitation numbers. When the incidence angle increased or the cavitation number decreased, the steady balanced cavitation transited to unsteady and non-uniform patterns. Typical patterns reported in the previous studies such as rotating, asymmetric and alternating for 3- and 4-blades were successfully reproduced. In this study, cascades of the larger number of blades were dealt with to consider the generality of unsteadiness by reducing the influence of periodicity. The cavitation is basically triggered in the backward next section. However, the period of time for growing causes complexity in the discrimination of propagation. In most cases of rotating partial cavitation, except for 4-blades, the cavity develops in the second passage of backward direction after the decay of largest cavity. In case of many blades, multiple cavities rotate simultaneously and the particular patterns observed in cascades of small even numbers of blades attenuate.http://deepblue.lib.umich.edu/bitstream/2027.42/84276/1/CAV2009-final90.pd

    Mechanism of carrier-induced ferromagnetism in magnetic semiconductors

    Full text link
    Taking into account both random impurity distribution and thermal fluctuations of localized spins, we have performed a model calculation for the carrier (hole) state in Ga1−x_{1-x}Mnx_xAs by using the coherent potential approximation (CPA). The result reveals that a {\it p}-hole in the band tail of Ga1−x_{1-x}Mnx_xAs is not like a free carrier but is rather virtually bounded to impurity sites. The carrier spin strongly couples to the localized {\it d} spins on Mn ions. The hopping of the carrier among Mn sites causes the ferromagnetic ordering of the localized spins through the double-exchange mechanism. The Curie temperature obtained by using conventional parameters agrees well with the experimental result.Comment: 7 pages, 4 figure

    Disorder, spin-orbit, and interaction effects in dilute Ga1−xMnxAs{\rm Ga}_{1-x}{\rm Mn}_x{\rm As}

    Full text link
    We derive an effective Hamiltonian for Ga1−xMnxAs{\rm Ga}_{1-x}{\rm Mn}_x {\rm As} in the dilute limit, where Ga1−xMnxAs{\rm Ga}_{1-x}{\rm Mn}_x {\rm As} can be described in terms of spin F=3/2F=3/2 polarons hopping between the {\rm Mn} sites and coupled to the local {\rm Mn} spins. We determine the parameters of our model from microscopic calculations using both a variational method and an exact diagonalization within the so-called spherical approximation. Our approach treats the extremely large Coulomb interaction in a non-perturbative way, and captures the effects of strong spin-orbit coupling and Mn positional disorder. We study the effective Hamiltonian in a mean field and variational calculation, including the effects of interactions between the holes at both zero and finite temperature. We study the resulting magnetic properties, such as the magnetization and spin disorder manifest in the generically non-collinear magnetic state. We find a well formed impurity band fairly well separated from the valence band up to xactive≲0.015x_{\rm active} \lesssim 0.015 for which finite size scaling studies of the participation ratios indicate a localization transition, even in the presence of strong on-site interactions, where xactive<xnomx_{\rm active}<x_{\rm nom} is the fraction of magnetically active Mn. We study the localization transition as a function of hole concentration, Mn positional disorder, and interaction strength between the holes.Comment: 15 pages, 12 figure

    The Crossover from Impurity to Valence Band in Diluted Magnetic Semiconductors: The Role of the Coulomb Attraction by Acceptor

    Full text link
    The crossover between an impurity band (IB) and a valence band (VB) regime as a function of the magnetic impurity concentration in models for diluted magnetic semiconductors (DMS) is studied systematically by taking into consideration the Coulomb attraction between the carriers and the magnetic impurities. The density of states and the ferromagnetic transition temperature of a Spin-Fermion model applied to DMS are evaluated using Dynamical Mean-Field Theory (DMFT) and Monte Carlo (MC) calculations. It is shown that the addition of a square-well-like attractive potential can generate an IB at small enough Mn doping xx for values of the p−dp-d exchange JJ that are not strong enough to generate one by themselves. We observe that the IB merges with the VB when x>=xcx >= x_c where xcx_c is a function of JJ and the Coulomb attraction strength VV. Using MC calculations, we demonstrate that the range of the Coulomb attraction plays an important role. While the on-site attraction, that has been used in previous numerical simulations, effectively renormalizes JJ for all values of xx, an unphysical result, a nearest-neighbor range attraction renormalizes JJ only at very low dopings, i.e., until the bound holes wave functions start to overlap. Thus, our results indicate that the Coulomb attraction can be neglected to study Mn doped GaSb, GaAs, and GaP in the relevant doping regimes, but it should be included in the case of Mn doped GaN that is expected to be in the IB regime.Comment: 8 pages, 4 Postscript figures, RevTex

    Depth profile photoemission study of thermally diffused Mn/GaAs (001) interfaces

    Full text link
    We have performed a depth profile study of thermally diffused Mn/GaAs (001) interfaces using photoemission spectroscopy combined with Ar+^+-ion sputtering. We found that Mn ion was thermally diffused into the deep region of the GaAs substrate and completely reacted with GaAs. In the deep region, the Mn 2pp core-level and Mn 3dd valence-band spectra of the Mn/GaAs (001) sample heated to 600 ∘^{\circ}C were similar to those of Ga1−x_{1-x}Mnx_xAs, zinc-blende-type MnAs dots, and/or interstitial Mn in tetrahedrally coordinated by As atoms, suggesting that the Mn 3dd states were essentially localized but were hybridized with the electronic states of the host GaAs. Ferromagnetism was observed in the dilute Mn phase.Comment: 5 pages, 4 figure

    In vitro organogenesis using amphibian pluripotential cells

    Get PDF
    In the embryonic development of vertebrate, sequential cleavage is followed by the gastrulation as the first dynamic event of morphogenesis. Mesodermal induction is the most important event for normal body patterning such as the gastrulation, neural induction and formation of various organs. In the study to search for the mesodermal inducing factor, we reported "activin" as a strong mesoderm-inducible factor by the "animal cap assay", the in vitro assay system using amphibian pluripotential cell mass. We found that activin has mesodemal and endodermal inducing activity in dose-dependent manner, and then established the invitro induction system for various types of tissues and organs including craniofacial cartilage from animal cap cells by the treatments with activin and other inducing factors. Embryonic transplantation method showed that the treatments of animal cap cells for the induction of pronephros, beating heart were able to induce normally functional organs in vitro. These in vitro induction methods are useful for investigation of the molecular mechanisms of organ formation and body patterning in vertebrate development

    Combined approach of density functional theory and quantum Monte Carlo method to electron correlation in dilute magnetic semiconductors

    Full text link
    We present a realistic study for electronic and magnetic properties in dilute magnetic semiconductor (Ga,Mn)As. A multi-orbital Haldane-Anderson model parameterized by density-functional calculations is presented and solved with the Hirsch-Fye quantum Monte Carlo algorithm. Results well reproduce experimental results in the dilute limit. When the chemical potential is located between the top of the valence band and an impurity bound state, a long-range ferromagnetic correlations between the impurities, mediated by antiferromagnetic impurity-host couplings, are drastically developed. We observe an anisotropic character in local density of states at the impurity-bound-state energy, which is consistent with the STM measurements. The presented combined approach thus offers a firm starting point for realistic calculations of the various family of dilute magnetic semiconductors.Comment: 5 pages, 4 figure

    Nature of magnetic coupling between Mn ions in as-grown Ga1−x_{1-x}Mnx_{x}As studied by x-ray magnetic circular dichroism

    Full text link
    The magnetic properties of as-grown Ga1−x_{1-x}Mnx_{x}As have been investigated by the systematic measurements of temperature and magnetic field dependent soft x-ray magnetic circular dichroism (XMCD). The {\it intrinsic} XMCD intensity at high temperatures obeys the Curie-Weiss law, but residual spin magnetic moment appears already around 100 K, significantly above Curie temperature (TCT_C), suggesting that short-range ferromagnetic correlations are developed above TCT_C. The present results also suggest that antiferromagnetic interaction between the substitutional and interstitial Mn (Mnint_{int}) ions exists and that the amount of the Mnint_{int} affects TCT_C.Comment: 4 pages, 4 figure
    • …
    corecore