1,462 research outputs found
Mechanism of carrier-induced ferromagnetism in magnetic semiconductors
Taking into account both random impurity distribution and thermal
fluctuations of localized spins, we have performed a model calculation for the
carrier (hole) state in GaMnAs by using the coherent potential
approximation (CPA). The result reveals that a {\it p}-hole in the band tail of
GaMnAs is not like a free carrier but is rather virtually bounded
to impurity sites. The carrier spin strongly couples to the localized {\it d}
spins on Mn ions. The hopping of the carrier among Mn sites causes the
ferromagnetic ordering of the localized spins through the double-exchange
mechanism. The Curie temperature obtained by using conventional parameters
agrees well with the experimental result.Comment: 7 pages, 4 figure
Disorder, spin-orbit, and interaction effects in dilute
We derive an effective Hamiltonian for in
the dilute limit, where can be described in
terms of spin polarons hopping between the {\rm Mn} sites and coupled
to the local {\rm Mn} spins. We determine the parameters of our model from
microscopic calculations using both a variational method and an exact
diagonalization within the so-called spherical approximation. Our approach
treats the extremely large Coulomb interaction in a non-perturbative way, and
captures the effects of strong spin-orbit coupling and Mn positional disorder.
We study the effective Hamiltonian in a mean field and variational calculation,
including the effects of interactions between the holes at both zero and finite
temperature. We study the resulting magnetic properties, such as the
magnetization and spin disorder manifest in the generically non-collinear
magnetic state. We find a well formed impurity band fairly well separated from
the valence band up to for which finite size
scaling studies of the participation ratios indicate a localization transition,
even in the presence of strong on-site interactions, where is the fraction of magnetically active Mn. We study the
localization transition as a function of hole concentration, Mn positional
disorder, and interaction strength between the holes.Comment: 15 pages, 12 figure
Interlayer Exchange Coupling in (Ga,Mn)As-based Superlattices
The interlayer coupling between (Ga,Mn)As ferromagnetic layers in
all-semiconductor superlattices is studied theoretically within a tight-binding
model, which takes into account the crystal, band and magnetic structure of the
constituent superlattice components. It is shown that the mechanism originally
introduced to describe the spin correlations in antiferromagnetic EuTe/PbTe
superlattices, explains the experimental results observed in ferromagnetic
semiconductor structures, i.e., both the antiferromagnetic coupling between
ferromagnetic layers in IV-VI (EuS/PbS and EuS/YbSe) superlattices as well as
the ferromagnetic interlayer coupling in III-V ((Ga,Mn)As/GaAs) multilayer
structures. The model allows also to predict (Ga,Mn)As-based structures, in
which an antiferromagnetic interlayer coupling could be expected.Comment: 4 pages, 3 figure
Spin-dependent tunneling in modulated structures of (Ga,Mn)As
A model of coherent tunneling, which combines multi-orbital tight-binding
approximation with Landauer-B\"uttiker formalism, is developed and applied to
all-semiconductor heterostructures containing (Ga,Mn)As ferromagnetic layers. A
comparison of theoretical predictions and experimental results on
spin-dependent Zener tunneling, tunneling magnetoresistance (TMR), and
anisotropic magnetoresistance (TAMR) is presented. The dependence of spin
current on carrier density, magnetization orientation, strain, voltage bias,
and spacer thickness is examined theoretically in order to optimize device
design and performance.Comment: 9 pages, 13 figures, submitted to PR
Combined approach of density functional theory and quantum Monte Carlo method to electron correlation in dilute magnetic semiconductors
We present a realistic study for electronic and magnetic properties in dilute
magnetic semiconductor (Ga,Mn)As. A multi-orbital Haldane-Anderson model
parameterized by density-functional calculations is presented and solved with
the Hirsch-Fye quantum Monte Carlo algorithm. Results well reproduce
experimental results in the dilute limit. When the chemical potential is
located between the top of the valence band and an impurity bound state, a
long-range ferromagnetic correlations between the impurities, mediated by
antiferromagnetic impurity-host couplings, are drastically developed. We
observe an anisotropic character in local density of states at the
impurity-bound-state energy, which is consistent with the STM measurements. The
presented combined approach thus offers a firm starting point for realistic
calculations of the various family of dilute magnetic semiconductors.Comment: 5 pages, 4 figure
Depth profile photoemission study of thermally diffused Mn/GaAs (001) interfaces
We have performed a depth profile study of thermally diffused Mn/GaAs (001)
interfaces using photoemission spectroscopy combined with Ar-ion
sputtering. We found that Mn ion was thermally diffused into the deep region of
the GaAs substrate and completely reacted with GaAs. In the deep region, the Mn
2 core-level and Mn 3 valence-band spectra of the Mn/GaAs (001) sample
heated to 600 C were similar to those of GaMnAs,
zinc-blende-type MnAs dots, and/or interstitial Mn in tetrahedrally coordinated
by As atoms, suggesting that the Mn 3 states were essentially localized but
were hybridized with the electronic states of the host GaAs. Ferromagnetism was
observed in the dilute Mn phase.Comment: 5 pages, 4 figure
Effect of kinetic resonances on the stability of Resistive Wall Mode in Reversed Field Pinch
The kinetic effects, due to the mode resonance with thermal particle drift
motions in the reversed field pinch (RFP) plasmas, are numerically investigated
for the stability of the resistive wall mode, using a non-perturbative
MHD-kinetic hybrid formulation. The kinetic effects are generally found too
weak to substantially change the mode growth rate, or the stability margin,
re-enforcing the fact that the ideal MHD model is rather adequate for
describing the RWM physics in RFP experiments.Comment: Submitted to: Plasma Phys. Control. Fusio
Electrospray ionization mass spectrometric observation of ligand exchange of zinc pyrithione with amino acids
ArticleRAPID COMMUNICATIONS IN MASS SPECTROMETRY. 23(14):2161-2166 (2009)journal articl
Integrated shell approach to vertical position control on PBX-M
The PBX-M device produces highly shaped discharges that, because of the negative external magnetic field decay index required, are vertically unstable. Vertical positional stability in PBX-M has been achieved by directly controlling the n = 0 component of the eddy current in the passive shell instead of the commonly used function of magnetic flux signals. Because the active coil is controlled via currents in the passive shell we call this an ``integrated shell`` approach to vertical position control. We present results of these experiments and make comparisons between the two methods of control
- …