1,841 research outputs found
Generalized BRST Quantization and Massive Vector Fields
A previously proposed generalized BRST quantization on inner product spaces
for second class constraints is further developed through applications. This
BRST method involves a conserved generalized BRST charge Q which is not
nilpotent but which satisfies Q=\delta+\delta^{\dagger}, \delta^2=0, and by
means of which physical states are obtained from the projection
\delta|ph>=\delta^{\dagger}|ph>=0. A simple model is analyzed in detail from
which some basic properties and necessary ingredients are extracted. The method
is then applied to a massive vector field. An effective theory is derived which
is close to the one of the Stueckelberg model. However, since the scalar field
here is introduced in order to have inner product solutions, a massive
Yang-Mills theory with polynomial interaction terms might be possible to
construct.Comment: 19 pages,Latexfil
EFFECTS OF LAND COVER, WATER REDISTRIBUTION, AND TEMPERATURE ON ECOSYSTEM PROCESSES IN THE SOUTH PLATTE BASIN
Over oneâthird of the land area in the South Platte Basin of Colorado, Nebraska, and Wyoming, has been converted to croplands. Irrigated cropland now comprises 8% of the basin, while dry croplands make up 31%. We used the RHESSys model to compare the changes in plant productivity and vegetationârelated hydrological processes that occurred as a result of either land cover alteration or directional temperature changes (â2°C, +4°C). Land cover change exerted more control over annual plant productivity and water fluxes for converted grasslands, while the effect of temperature changes on productivity and water fluxes was stronger in the mountain vegetation. Throughout the basin, land cover change increased the annual loss of water to the atmosphere by 114 mm via evaporation and transpiration, an increase of 37%. Both irrigated and nonirrigated grains became active earlier in the year than shortgrass steppe, leading to a seasonal shift in water losses to the atmosphere. Basinâwide photosynthesis increased by 80% due to grain production. In contrast, a 4°C warming scenario caused annual transpiration to increase by only 3% and annual evaporation to increase by 28%, for a total increase of 71 mm. Warming decreased basinâwide photosynthesis by 16%. There is a large elevational range from east to west in the South Platte Basin, which encompasses the western edge of the Great Plains and the eastern front of the Rocky Mountains. This elevational gain is accompanied by great changes in topographic complexity, vegetation type, and climate. Shortgrass steppe and crops found at elevations between 850 and 1800 m give way to coniferous forests and tundra between 1800 and 4000 m. Climate is increasingly dominated by winter snow precipitation with increasing elevation, and the timing of snowmelt influences tundra and forest ecosystem productivity, soil moisture, and downstream discharge. Mean annual precipitation of \u3c500 mm on the plains below 1800 m is far less than potential evapotranspiration of 1000â1500 mm and is insufficient for optimum plant productivity. The changes in water flux and photosynthesis from conversion of steppe to cropland are the result of redistribution of snowmelt water from the mountains and groundwater pumping through irrigation projects
Climatic, edaphic, and biotic controls over storage and turnover of carbon in soils
Soil carbon, a major component of the global carbon inventory, has significant potential for change with changing climate and human land use. We applied the Century ecosystem model to a series of forest and grassland sites distributed globally to examine large-scale controls over soil carbon. Key site-specific parameters influencing soil carbon dynamics are soil texture and foliar lignin content; accordingly, we perturbed these variables at each site to establish a range of carbon concentrations and turnover times. We examined the simulated soil carbon stores, turnover times, and C:N ratios for correlations with patterns of independent variables. Results showed that soil carbon is related linearly to soil texture, increasing as clay content increases, that soil carbon stores and turnover time are related to mean annual temperature by negative exponential functions, and that heterotrophic respiration originates from recent detritus (âŒ50%), microbial turnover (âŒ30%), and soil organic matter (âŒ20%) with modest variations between forest and grassland ecosystems. The effect of changing temperature on soil organic carbon (SOC) estimated by Century is dSOC/dT= 183eâ0.034T. Global extrapolation of this relationship leads to an estimated sensitivity of soil C storage to a temperature of â11.1 Pg° Câ1, excluding extreme arid and organic soils. In Century, net primary production (NPP) and soil carbon are closely coupled through the N cycle, so that as temperatures increase, accelerated N release first results in fertilization responses, increasing C inputs. The Century-predicted effect of temperature on carbon storage is modified by as much as 100% by the N cycle feedback. Century-estimated soil C sensitivity (â11.1 Pg° Câ1) is similar to losses predicted with a simple data-based calculation (â14.1 Pg° Câ1). Inclusion of the N cycle is important for even first-order predictions of terrestrial carbon balance. If the NPP-SOC feedback is disrupted by land use or other disturbances, then SOC sensitivity can greatly exceed that estimated in our simulations. Century results further suggest that if climate change results in drying of organic soils (peats), soil carbon loss rates can be high
Climate and nitrogen controls on the geography and timescales of terrestrial biogeochemical cycling
We used the terrestrial ecosystem model âCenturyâ to evaluate the relative roles of water and nitrogen limitation of net primary productivity, spatially and in response to climate variability. Within ecology, there has been considerable confusion and controversy over the large-scale significance of limitation of net primary production (NPP) by nutrients versus biophysical quantities (e.g., heat, water, and sunlight) with considerable evidence supporting both views. The Century model, run to a quasi-steady state condition, predicts âequilibrationâ of water with nutrient limitation, because carbon fixation and nitrogen fluxes (inputs and losses) are controlled by water fluxes, and the capture of nitrogen into organic matter is governed by carbon fixation. Patterns in the coupled water, nitrogen, and carbon cycles are modified substantially by ecosystem type or species-specific controls over resource use efficiency (water and nitrogen used per unit NPP), detrital chemistry, and soil water holding capacity. We also examined the coupling between water and nutrients during several temperature perturbation experiments. Model experiments forced by satellite-observed temperatures suggest that climate anomalies can result in significant changes to terrestrial carbon dynamics. The cooling associated with the Mount Pinatubo eruption aerosol injection may have transiently increased terrestrial carbon storage. However, because processes in the water, carbon, and nitrogen cycles have different response times, model behavior during the return to steady state following perturbation was complex and extended for decades after 1- to 5-year perturbations. Thus consequences of climate anomalies are influenced by the climatic conditions of the preceding years, and climate-carbon correlations may not be simple to interpret
Quantum phase space distributions in thermofield dynamics
It is shown that the the quantum phase space distributions corresponding to a
density operator can be expressed, in thermofield dynamics, as overlaps
between the state and "thermal" coherent states. The usefulness
of this approach is brought out in the context of a master equation describing
a nonlinear oscillator for which exact expressions for the quantum phase
distributions for an arbitrary initial condition are derived.Comment: 17 pages, revtex, no figures. number of pages were incorrectly stated
as 3 instead of 17. No other correction
Development of simplified ecosystem models for applications in Earth system studies: The Century experience
During the past decade, a growing need to conduct regional assessments of long-term trends of ecosystem behavior and the technology to meet this need have converged. The Century model is the product of research efforts initially intended to develop a general model of plant-soil ecosystem dynamics for the North American central grasslands. This model is now being used to simulate plant production, nutrient cycling, and soil organic matter dynamics for grassland, crop, forest, and shrub ecosystems in various regions of the world, including temperate and tropical ecosystems. This paper will focus on the philosophical approach used to develop the structure of Century. The steps included were model simplification, parameterization, and testing. In addition, the importance of acquiring regional data bases for model testing and the present regional application of Century in the Great Plains, which focus on regional ecosystem dynamics and the effect of altering environmental conditions, are discussed
Thermal Bogoliubov transformation in nuclear structure theory
Thermal Bogoliubov transformation is an essential ingredient of the thermo
field dynamics -- the real time formalism in quantum field and many-body
theories at finite temperatures developed by H. Umezawa and coworkers. The
approach to study properties of hot nuclei which is based on the extension of
the well-known Quasiparticle-Phonon Model to finite temperatures employing the
TFD formalism is presented. A distinctive feature of the QPM-TFD combination is
a possibility to go beyond the standard approximations like the thermal
Hartree-Fock or the thermal RPA ones.Comment: 8 pages, Proceedings of the International Bogolyubov Conference
"Problems of Theoretical and Mathematical Physics", August 23 -- 27, 2009,
Dubna, Russi
- âŠ