1,372 research outputs found

    Massive young stellar object W42-MME: The discovery of an infrared jet using VLT/NACO near-infrared images

    Full text link
    We report on the discovery of an infrared jet from a deeply embedded infrared counterpart of 6.7 GHz methanol maser emission (MME) in W42 (i.e. W42-MME). We also investigate that W42-MME drives a parsec-scale H2 outflow, with detection of bow shock feature at ~0.52 pc to the north. The inner ~0.4 pc part of the H2 outflow has a position angle of ~18 deg and the position angle of ~40 deg is found farther away on either side of outflow from W42-MME. W42-MME is detected at wavelengths longer than 2.2 microns and is a massive young stellar object, with the estimated stellar mass of 19+-4 Msun. We map the inner circumstellar environment of W42-MME using VLT/NACO adaptive optics Ks and L' observations at resolutions ~0.2 arcsec and ~0.1 arcsec, respectively. We discover a collimated jet in the inner 4500 AU using the L' band, which contains prominent Br alpha line emission. The jet is located inside an envelope/cavity (extent ~10640 AU) that is tapered at both ends and is oriented along the north-south direction. Such observed morphology of outflow cavity around massive star is scarcely known and is very crucial for understanding the jet-outflow formation process in massive star formation. Along the flow axis, which is parallel to the previously known magnetic field, two blobs are found in both the NACO images at distances of ~11800 AU, located symmetrically from W42-MME. The observed W42-MME jet-outflow configuration can be used to constrain the jet launching and jet collimation models in massive star formation.Comment: 6 pages, 5 figures, Accepted for publication in The Astrophysical Journa

    Radial scalelengths of the galactic thin and thick disc with 2MASS data

    Get PDF
    This paper presents a global analysis of the 2MASS (Two Micron All Sky Survey) data as observed in seven fields at different galactic latitudes in our Galaxy. The data allow the preliminary determination of the scale parameters, which lead to strong constraints on the radial and vertical structure of the galactic thin and thick disc. The interpretation of star counts and colour distributions of stars in the near-infrared with the synthetic stellar population model gives strong evidence that the galactic thin disc density scalelength (hR) is rather short (2.8 ± 0.3 kpc). The galactic thick disc population is revisited in the light of new data. We find the thick disc to have a local density of 3.5 ± 2.0 per cent of the thin disc, exponential scaleheight (hz) of 860±200 pc and exponential scalelength (hR) of 3.7 ± 0.80.5 kpc

    Scale length of the galactic thin disk

    Get PDF
    This paper presents an analysis of the first 2MASS (The Two Micron All Sky Survey) sampler data as observed at lower Galactic latitude in our Galaxy. These new near-infrared data provide insight into the structure of the thin disk of our Galaxy, The interpretation of star counts and color distributions of stars in the near-infrared with the synthetic stellar population model, gives strong evidence that the Galactic thin disk density scale length,hR, is rather short (2.7 ± 0.1 kpc)
    • …
    corecore