2 research outputs found

    Cytogenetic characterization of telomeres in the holocentric chromosomes of the lepidopteran Mamestra brassicae

    Get PDF
    Telomeres of the Mamestra brassica holocentric chromosomes were studied by Southern blotting, in-situ hybridization and Bal31 assay evidencing the presence of the telomeric (TTAGG)(n) repeat. Successively, molecular analysis of telomeres showed that TRAS1 transposable elements were present at the subtelomeric regions of autosomes but not in the NOR-bearing telomeres of the Z and W sex chromosomes. TRAS1 appeared to be transcriptionally active and non-methylated, as evaluated by RT-PCR and digestion with MspI and HpaII. Finally, dot-blotting experiments showed that the 2.8 +/- 0.5% of the M. brassicae genome consists of TRAS1

    Novel cases of D-2-hydroxyglutaric aciduria with IDH1 or IDH2 mosaic mutations identified by amplicon deep sequencing

    No full text
    Background Mosaic IDH1 mutations are described as the cause of metaphyseal chondromatosis with increased urinary excretion of D-2-hydroxyglutarate (MC-HGA), and mutations in IDH2 as the cause of D-2-hydroxyglutaric aciduria (D-2HGA) type II. Mosaicism for IDH2 mutations has not previously been reported as a cause of D-2HGA. Here we describe three cases: one MC-HGA case with IDH1 mosaic mutations, and two D-2HGA type II cases. In one D-2HGA case we identified mosaicism for an IDH2 mutation as the genetic cause of this disorder; the other D-2HGA case was caused by a heterozygous IDH2 mutation, while the unaffected mother was a mosaic carrier. Methods We performed amplicon deep sequencing using the 454 GS Junior platform, next to Sanger sequencing, to identify and confirm mosaicism of IDH1 or IDH2 mutations in MC-HGA or D-2HGA, respectively. Results and conclusions We identified different mutant allele percentages in DNA samples derived from different tissues (blood vs fibroblasts). Furthermore, we found that mutant allele percentages of IDH1 decreased after more passages had occurred in fibroblast cell cultures. We describe a method for the detection and validation of mosaic mutations in IDH1 and IDH2, making quantification with laborious cloning techniques obsolete
    corecore