9 research outputs found

    Monitoring of millimeter-scale deformations in Tallinn using repeated leveling and PS-InSAR analysis of Sentinel-1 data

    Get PDF
    The aim of this study was to evaluate millimeter-scale deformations in Tallinn, the capital of Estonia, by using repeated leveling data and the synthetic aperture radar (SAR) images of Sentinel-1 satellite mission. The persistent scattered interferometric SAR (PS-InSAR) analysis of images from ascending and descending orbits from June 2016 to November 2021 resulted the line-of-sight (LOS) displacement velocities in the Tallinn city center. Velocity solutions were estimated for the full period of time, but also for shorter periods to monitor deformation changes in yearly basis. The gridded LOS velocity models were used for the decomposition of east-west and vertical velocities. Additionally, the uncertainty of 2D velocity solutions was estimated by following the propagation of uncertainty. The 3D velocity of permanent GNSS station “MUS2” in Tallinn was used to unify the reference of all PS-InSAR velocity solutions. The results of the latest leveling in Tallinn city center in 2007/2008 and 2019 showed rather small subsidence rates which were in agreement with InSAR long-termsolution. However, the short-termInSAR velocity solutions revealed larger subsidence of city center with a rate about –10 mm/yr in 2016–2017, and the uplift around 5 mm/yr in 2018–2019 with relatively stable periods in 2017–2018 and 2019–2021. The inclusion of groundwater level observation data and the geological mapping information into the analysis revealed possible spatiotemporal correlation between the InSAR results and the groundwater level variations over the deep valleys buried under quaternary sediments

    The Luusika potential field anomaly, eastern Estonia: modelling results

    Get PDF
    This study considers the anomalous gravity and magnetic fields in the Alutaguse petrological–structural domain, eastern Estonia. A 10 km wide local maximum (+6.26 mGal) Bouguer anomaly field was discovered at 58.96°N, 26.61°E from the ground gravity data by the Estonian Land Board in 2010–2011. The ground magnetic field intensity measurements indicated a positive magnetic anomaly of 600 nT, in addition to the local gravity maximum. Based on depth estimations, the centre of the anomaly source is placed at 2500–3000 m within the ~1.8 to 1.9 Ga Svecofennian basement. To provide information on the physical properties of the causative source of the anomalies, the geophysical modelling of potential fields was carried out by testing a number of lithologies as sources. The lithologies considered were the known post-orogenic and anorogenic magmatic intrusions in the Estonian basement, as well as typical metamorphic rocks of the Alutaguse domain. The obtained models indicate that the Luusika feature has a range of densities from 2760 to 2920 kg/m3 and magnetic susceptibilities from 20 000 × 10–6 to 56 000 × 10–6 SI. These models suggest that the Luusika causative source is an intermediate to the mafic rock unit, similar to post-orogenic or anorogenic massifs of the Svecofennian basement of Estonia

    Postglacial gravity change in Fennoscandia - three decades of repeated absolute gravity observations

    Get PDF
    For the first time, we present a complete, processed compilation of all repeated absolute gravity (AG) observations in the Fennoscandian postglacial land uplift area and assess their ability to accurately describe the secular gravity change, induced by Glacial Isostatic Adjustment (GIA). The dataset spans over more than three decades and consists of 688 separate observations at 59 stations. Ten different organisations have contributed with measurements using 14 different instruments. The work was coordinated by the Nordic Geodetic Commisson (NKG). Representatives from each country collected and processed data from their country, respectively, and all data were then merged to one dataset. Instrumental biases are considered and presented in terms of results from international comparisons of absolute gravimeters. From this dataset, gravity rates of change (g_dot) are estimated for all stations with more than two observations and a timespan larger than two years. The observed rates are compared to predicted rates from a global GIA model as well as the state of the art semi-empirical land uplift model for Fennoscandia, NKG2016LU. Linear relations between observed g_dot and the land uplift, h_dot (NKG2016LU), are estimated from the absolute gravity observations by means of weighted least squares adjustment (WLSA) as well as weighted orthogonal distance regression (WODR). The empirical relations are not significantly different from the modelled, geophysical relation g_dot = 0:03 - 0:163(+-0.016)h_dot. We also present a g_dot -model for the whole Fennoscandian land uplift region. At many stations, the observational estimates of g_dot still suffer from few observations and/or unmodelled environmental effects (e.g. local hydrology). We therefore argue that, at present, the best predictions of GIA-induced gravity rate of change in Fennoscandia are achieved by means of the NKG2016LU land uplift model, together with the geophysical relation between g_dot and h_dot

    Towards unification of terrestrial gravity data sets in Estonia

    Full text link
    Gravity data in Estonia have been collected by different institutions over many decades. This study assesses the suitability of available gravity data for ensuring a 1 cm geoid modelling accuracy over Estonia and in the Baltic Sea region in general. The main focus of this study is on the determination and elimination of discrepancies between three nationwide datasets. It was detected that one tested historic gravity dataset contained inadmissible systematic biases with respect to other tested datasets. Possible ways of gravity data improvement are discussed. More specifically, new field observation campaigns and aspects of using their outcomes in subsequent regional geoid modelling are suggested

    New 3D velocity model of Estonia from GNSS measurements

    Get PDF
    The aim of this study was to create a 3D crustal deformation model for Estonia, based on dense Global Navigation Satellite System (GNSS) data (geodetic points with velocities) and validate the existing models of horizontal and vertical crustal deformations with velocities from Estonian GNSS measurements. The observations performed for at least eight years at Estonian GNSS permanent stations and during the GNSS campaign measurements of 1997, 2008 and 2017 on the Estonian 1st-order geodetic reference network were used as input data. Coordinates of the geodetic points were calculated in the ITRF2008 reference frame using the Precise Point Positioning method. Horizontal and vertical velocities (in the North, East and Up directions) were calculated for a total of 22 GNSS points. Models for horizontal and vertical velocities were calculated using the removeĂącomputeĂąrestore method. The model of glacial isostatic adjustment (GIA) of the Nordic Geodetic Commission NKG2016GIA was used as a reference model. Residual velocities of GNSS points showed a good fit with respect to the reference model. The residual velocities were analysed by geostatistical methods and the prediction surfaces of the residual velocities were modelled. After adding the surface of the residual velocities back to the reference model NKG2016GIA, the modelled surface EST2020VEL was obtained. The obtained model was compared with the up-to-date intraplate deformation model NKG_RF17VEL. It was found that recent Fennoscandian intraplate deformation models NKG2016LU and NKG_RF17VEL fitted well with the Estonian GNSS data. However, both models are systematically shifted with respect to the Estonian GNSS data. For applications in Estonia, it is better to use the fitted model EST2020VEL. The uncertainty of the model is estimated to be lower than ±0.5 mm/a

    The Noise Properties and Velocities from a Time-Series of Estonian Permanent GNSS Stations

    Full text link
    The aim of this study was to estimate the noise properties, velocities, and their uncertainties from a time-series of selected (~9 years long) Estonian continuously operating Global Navigation Satellite System (GNSS) stations. Two software packages based on different processing methods, Gipsy−Oasis and Bernese, were used for daily coordinate calculations. Different methods and software (Tsview, Hector, and MIDAS) were used for coordinate time-series analysis. Outliers were removed using three different strategies. Six different stochastic noise models were used for trend estimation altogether with the analysis of the noise properties of the residual time-series with Hector. Obtained velocities were compared with different land uplift and glacial isostatic adjustment models (e.g., ICE-6G (VM5a), NKG2016LU, etc.). All compared solutions showed similar fit to the compared models. It was confirmed that the best fit to the time-series residuals were with the flicker noise plus white noise model (for the North and East component) and generalized Gauss−Markov model (for Up). Velocities from MIDAS, Tsview, and Hector solutions within the same time-series (Gipsy−Oasis or Bernese) agreed well but velocity uncertainties differed up to four times. The smallest uncertainties were obtained from Tsview; the MIDAS solution produced the most conservative values. Although the East and Up component velocities between Gipsy and Bernese solutions agreed well, the North component velocities were systematically shifted
    corecore