3 research outputs found

    Tectonics and Metallogeny of East Kazakhstan

    Get PDF
    General regularities in the formation of tectonic and metallogenic structures are considered as a scientific basis for forecasting new deposits of nonferrous, precious and rare metals in the territory of East Kazakhstan and are considered on the basis of modern geotectonic concepts of the Earth self-development. Regular connections between the main ore-bearing structures and the leading geological-industrial types of deposits are determined with features of the deep crustal structure and certain geodynamic settings of various geotectonic cycles and eras (from the Precambrian to the Quaternary). The belt placement of ore deposits is emphasized with the identification of four ore belts: Rudny Altai (Cu, Pb, Zn, Au), West Kalba (Au, Ag), Kalba-Narym (Ta, Nb, Be, Li, Sn, W) and Zharma-Saurs (Cr, Ni, Co, Au, TR). In the location of gold ore deposits, the Zaisan suture zone, formed in the collision zone of the Kazakhstan and Siberian lithospheric plates, is the ore-controlling value. Spatial-genetic connections of rare metal and rare-earth deposits with granitoid belts formed in post-collision (orogenic) geodynamic conditions of Permian time are determined. The research is aimed at strengthening the mineral and raw material base for the operating enterprises of the East Kazakhstan region

    Mineralogical Tracers of Gold and Rare-Metal Mineralization in Eastern Kazakhstan

    No full text
    Replenishment of mineral resources, especially gold and rare metals, is critical for progress in the mining and metallurgical industry of Eastern Kazakhstan. To substantiate the scientific background for mineral exploration, we study microinclusions in minerals from gold and rare-metal fields, as well as trace-element patterns in ores and their hosts that may mark gold and rare-metal mineralization. The revealed compositions of gold-bearing sulfide ores and a number of typical minerals (magnetite, goethite, arsenopyrite, antimonite, gold and silver) and elements (Fe, Mn, Cu, Pb, Zn, As, and Sb) can serve as exploration guides. The analyzed samples contain rare micrometer lead (alamosite, kentrolite, melanotekite, cotunnite) and nickel (bunsenite, trevorite, gersdorffite) phases and accessory cassiterite, wolframite, scheelite, and microlite. The ores bear native gold (with Ag and Pt impurities) amenable to concentration by gravity and flotation methods. Multistage rare-metal pegmatite mineralization can be predicted from the presence of mineral assemblages including cleavelandite, muscovite, lepidolite, spodumene, pollucite, tantalite, microlite, etc. and such elements as Ta, Nb, Be, Li, Cs, and Sn. Pegmatite veins bear diverse Ta minerals (columbite, tantalite-columbite, manganotantalite, ixiolite, and microlite) that accumulated rare metals late during the evolution of the pegmatite magmatic system. The discovered mineralogical and geochemical criteria are useful for exploration purposes

    Mineralogical Tracers of Gold and Rare-Metal Mineralization in Eastern Kazakhstan

    No full text
    Replenishment of mineral resources, especially gold and rare metals, is critical for progress in the mining and metallurgical industry of Eastern Kazakhstan. To substantiate the scientific background for mineral exploration, we study microinclusions in minerals from gold and rare-metal fields, as well as trace-element patterns in ores and their hosts that may mark gold and rare-metal mineralization. The revealed compositions of gold-bearing sulfide ores and a number of typical minerals (magnetite, goethite, arsenopyrite, antimonite, gold and silver) and elements (Fe, Mn, Cu, Pb, Zn, As, and Sb) can serve as exploration guides. The analyzed samples contain rare micrometer lead (alamosite, kentrolite, melanotekite, cotunnite) and nickel (bunsenite, trevorite, gersdorffite) phases and accessory cassiterite, wolframite, scheelite, and microlite. The ores bear native gold (with Ag and Pt impurities) amenable to concentration by gravity and flotation methods. Multistage rare-metal pegmatite mineralization can be predicted from the presence of mineral assemblages including cleavelandite, muscovite, lepidolite, spodumene, pollucite, tantalite, microlite, etc. and such elements as Ta, Nb, Be, Li, Cs, and Sn. Pegmatite veins bear diverse Ta minerals (columbite, tantalite-columbite, manganotantalite, ixiolite, and microlite) that accumulated rare metals late during the evolution of the pegmatite magmatic system. The discovered mineralogical and geochemical criteria are useful for exploration purposes
    corecore