19 research outputs found

    A morphology independent approach for identifying dividing adult neural stem cells in the mouse hippocampus

    Get PDF
    Background: Type 1 adult hippocampal neural stem cells (AH-NSCs) continue to generate neurons throughout life, albeit at a very low rate. The relative quiescence of this population of cells has led to many studies investigating factors that may increase their division. Current methods of identifying dividing AH-NSCs in vivo require the identification and tracing of radial processes back to nuclei within the subgranular zone. However, caveats to this approach include the time-intensive nature of identifying AH-NSCs with such a process, as well as the fact that this approach ignores the relatively more active population of horizontally oriented AH-NSCs that also reside in the subgranular zone. Results: Here we describe, and then verify using Hes5::GFP mice, that labeling for the cell cycle marker Ki67 and selection against the intermediate progenitor cell marker TBR2 (Ki67; TBR2 nuclei) is sufficient to identify dividing horizontally and radially oriented AH-NSCs in the adult mouse hippocampus. Conclusions: These findings provide a simple and accurate way to quantify dividing AH-NSCs in vivo using a morphology-independent approach that will facilitate studies into neurogenesis within the hippocampal stem cell niche of the adult brain. Developmental Dynamics 247:194–200, 2018

    Global Landscape Review of Serotype-Specific Invasive Pneumococcal Disease Surveillance among Countries Using PCV10/13: The Pneumococcal Serotype Replacement and Distribution Estimation (PSERENADE) Project.

    Get PDF
    Serotype-specific surveillance for invasive pneumococcal disease (IPD) is essential for assessing the impact of 10- and 13-valent pneumococcal conjugate vaccines (PCV10/13). The Pneumococcal Serotype Replacement and Distribution Estimation (PSERENADE) project aimed to evaluate the global evidence to estimate the impact of PCV10/13 by age, product, schedule, and syndrome. Here we systematically characterize and summarize the global landscape of routine serotype-specific IPD surveillance in PCV10/13-using countries and describe the subset that are included in PSERENADE. Of 138 countries using PCV10/13 as of 2018, we identified 109 with IPD surveillance systems, 76 of which met PSERENADE data collection eligibility criteria. PSERENADE received data from most (n = 63, 82.9%), yielding 240,639 post-PCV10/13 introduction IPD cases. Pediatric and adult surveillance was represented from all geographic regions but was limited from lower income and high-burden countries. In PSERENADE, 18 sites evaluated PCV10, 42 PCV13, and 17 both; 17 sites used a 3 + 0 schedule, 38 used 2 + 1, 13 used 3 + 1, and 9 used mixed schedules. With such a sizeable and generally representative dataset, PSERENADE will be able to conduct robust analyses to estimate PCV impact and inform policy at national and global levels regarding adult immunization, schedule, and product choice, including for higher valency PCVs on the horizon

    Immunoglobulin, glucocorticoid, or combination therapy for multisystem inflammatory syndrome in children: a propensity-weighted cohort study.

    Get PDF
    BACKGROUND: Multisystem inflammatory syndrome in children (MIS-C), a hyperinflammatory condition associated with SARS-CoV-2 infection, has emerged as a serious illness in children worldwide. Immunoglobulin or glucocorticoids, or both, are currently recommended treatments. METHODS: The Best Available Treatment Study evaluated immunomodulatory treatments for MIS-C in an international observational cohort. Analysis of the first 614 patients was previously reported. In this propensity-weighted cohort study, clinical and outcome data from children with suspected or proven MIS-C were collected onto a web-based Research Electronic Data Capture database. After excluding neonates and incomplete or duplicate records, inverse probability weighting was used to compare primary treatments with intravenous immunoglobulin, intravenous immunoglobulin plus glucocorticoids, or glucocorticoids alone, using intravenous immunoglobulin as the reference treatment. Primary outcomes were a composite of inotropic or ventilator support from the second day after treatment initiation, or death, and time to improvement on an ordinal clinical severity scale. Secondary outcomes included treatment escalation, clinical deterioration, fever, and coronary artery aneurysm occurrence and resolution. This study is registered with the ISRCTN registry, ISRCTN69546370. FINDINGS: We enrolled 2101 children (aged 0 months to 19 years) with clinically diagnosed MIS-C from 39 countries between June 14, 2020, and April 25, 2022, and, following exclusions, 2009 patients were included for analysis (median age 8·0 years [IQR 4·2-11·4], 1191 [59·3%] male and 818 [40·7%] female, and 825 [41·1%] White). 680 (33·8%) patients received primary treatment with intravenous immunoglobulin, 698 (34·7%) with intravenous immunoglobulin plus glucocorticoids, 487 (24·2%) with glucocorticoids alone; 59 (2·9%) patients received other combinations, including biologicals, and 85 (4·2%) patients received no immunomodulators. There were no significant differences between treatments for primary outcomes for the 1586 patients with complete baseline and outcome data that were considered for primary analysis. Adjusted odds ratios for ventilation, inotropic support, or death were 1·09 (95% CI 0·75-1·58; corrected p value=1·00) for intravenous immunoglobulin plus glucocorticoids and 0·93 (0·58-1·47; corrected p value=1·00) for glucocorticoids alone, versus intravenous immunoglobulin alone. Adjusted average hazard ratios for time to improvement were 1·04 (95% CI 0·91-1·20; corrected p value=1·00) for intravenous immunoglobulin plus glucocorticoids, and 0·84 (0·70-1·00; corrected p value=0·22) for glucocorticoids alone, versus intravenous immunoglobulin alone. Treatment escalation was less frequent for intravenous immunoglobulin plus glucocorticoids (OR 0·15 [95% CI 0·11-0·20]; p<0·0001) and glucocorticoids alone (0·68 [0·50-0·93]; p=0·014) versus intravenous immunoglobulin alone. Persistent fever (from day 2 onward) was less common with intravenous immunoglobulin plus glucocorticoids compared with either intravenous immunoglobulin alone (OR 0·50 [95% CI 0·38-0·67]; p<0·0001) or glucocorticoids alone (0·63 [0·45-0·88]; p=0·0058). Coronary artery aneurysm occurrence and resolution did not differ significantly between treatment groups. INTERPRETATION: Recovery rates, including occurrence and resolution of coronary artery aneurysms, were similar for primary treatment with intravenous immunoglobulin when compared to glucocorticoids or intravenous immunoglobulin plus glucocorticoids. Initial treatment with glucocorticoids appears to be a safe alternative to immunoglobulin or combined therapy, and might be advantageous in view of the cost and limited availability of intravenous immunoglobulin in many countries. FUNDING: Imperial College London, the European Union's Horizon 2020, Wellcome Trust, the Medical Research Foundation, UK National Institute for Health and Care Research, and National Institutes of Health

    Molecular mechanisms underlying malformations of cortical development

    No full text

    USP9X deletion elevates the density of oligodendrocytes within the postnatal dentate gyrus

    No full text
    Neural stem cells (NSCs) within the adult hippocampal dentate gyrus reside in the subgranular zone (SGZ). A dynamic network of signaling mechanisms controls the balance between the maintenance of NSC identity, and their subsequent differentiation into dentate granule neurons. Recently, the ubiquitin-specific protease 9 X-linked (USP9X) was shown to be important for hippocampal morphogenesis, as mice lacking this gene exhibited a higher proportion of proliferating NSCs, yet a decrease in neuronal numbers, within the postnatal dentate gyrus. Here we reveal that Usp9xdeficiency results in the upregulation of numerous oligodendrocytic and myelin-associated genes within the postnatal hippocampus. Moreover, cell counts reveal a significant increase in oligodendrocyte precursor cells and mature oligodendrocytes per unit volume of the mutant dentate gyrus. Collectively, these findings indicate that USP9X may regulate NSC lineage determination within the postnatal SGZ

    Implementation of continuous temperature monitoring during perioperative care : a feasibility study

    No full text
    BACKGROUND: Continuous body temperature monitoring during perioperative care is enabled by using a non-invasive "zero-heat-flux" (ZHF) device. However, rigorous evaluation of whether continuous monitoring capability improves process of care and patient outcomes is lacking. This study assessed the feasibility of a large-scale trial on the impact of continuous ZHF monitoring on perioperative temperature management practices and hypothermia prevention.METHODS: A feasibility study was conducted at a tertiary hospital. Participants included patients undergoing elective surgery under neuraxial or general anesthesia, and perioperative nurses and anesthetists caring for patient participants. Eighty-two patients pre and post introduction of the ZHF device were enrolled. Feasibility outcomes included recruitment and retention, protocol adherence, missing data or device failure, and staff evaluation of intervention feasibility and acceptability. Process of care outcomes included temperature monitoring practices, warming interventions and perioperative hypothermia.RESULTS: There were no adverse events related to the device and feasibility of recruitment was high (60%). Treatment adherence varied across the perioperative pathway (43 to 93%) and missing data due to electronic transfer issues were identified. Provision of ZHF monitoring had most impact on monitoring practices in the Post Anesthetic Care Unit; the impact on intraoperative monitoring practices was minimal.CONCLUSIONS: Enhancements to the design of the ZHF device, particularly for improved data retention and transfer, would be beneficial prior to a large-scale evaluation of whether continuous temperature monitoring will improve patient outcomes. Implementation research designs are needed for future work to improve the complex area of temperature monitoring during surgery. TRIAL REGISTRATION: Prospective registration prior to patient enrolment was obtained from the Australian and New Zealand Clinical Trials Registry (ANZCTR) on 16th April 2021 (Registration number: ACTRN12621000438853).</p

    Heterozygosity for Nuclear Factor One X in mice models features of Malan syndrome

    No full text
    Background: Nuclear Factor One X (NFIX) haploinsufficiency in humans results in Malan syndrome, a disorder characterized by overgrowth, macrocephaly and intellectual disability. Although clinical assessments have determined the underlying symptomology of Malan syndrome, the fundamental mechanisms contributing to the enlarged head circumference and intellectual disability in these patients remains undefined. Methods: Here, we used Nfix heterozygous mice as a model to investigate these aspects of Malan syndrome. Volumetric magnetic resonance imaging (MRI) was used to calculate the volumes of 20 brain sub regions. Diffusion tensor MRI was used to perform tractography-based analyses of the corpus callosum, hippocampal commissure, and anterior commissure, as well as structural connectome mapping of the whole brain. Immunohistochemistry examined the neocortical cellular populations. Two behavioral assays were performed, including the active place avoidance task to assess spatial navigation and learning and memory function, and the 3-chambered sociability task to examine social behaviour. Findings: Adult Nfix mice exhibit significantly increased brain volume (megalencephaly) compared to wildtypes, with the cerebral cortex showing the highest increase. Moreover, all three forebrain commissures, in particular the anterior commissure, revealed significantly reduced fractional anisotropy, axial and radial diffusivity, and tract density intensity. Structural connectome analyses revealed aberrant connectivity between many crucial brain regions. Finally, Nfix mice exhibit behavioral deficits that model intellectual disability. Interpretation: Collectively, these data provide a significant conceptual advance in our understanding of Malan syndrome by suggesting that megalencephaly underlies the enlarged head size of these patients, and that disrupted cortical connectivity may contribute to the intellectual disability these patients exhibit. Fund: Australian Research Council (ARC) Discovery Project Grants, ARC Fellowship, NYSTEM and Australian Postgraduate Fellowships

    Usp9x-deficiency disrupts the morphological development of the postnatal hippocampal dentate gyrus

    No full text
    Within the adult mammalian brain, neurogenesis persists within two main discrete locations, the subventricular zone lining the lateral ventricles, and the hippocampal dentate gyrus. Neurogenesis within the adult dentate gyrus contributes to learning and memory, and deficiencies in neurogenesis have been linked to cognitive decline. Neural stem cells within the adult dentate gyrus reside within the subgranular zone (SGZ), and proteins intrinsic to stem cells, and factors within the niche microenvironment, are critical determinants for development and maintenance of this structure. Our understanding of the repertoire of these factors, however, remains limited. The deubiquitylating enzyme USP9X has recently emerged as a mediator of neural stem cell identity. Furthermore, mice lacking Usp9x exhibit a striking reduction in the overall size of the adult dentate gyrus. Here we reveal that the development of the postnatal SGZ is abnormal in mice lacking Usp9x. Usp9x conditional knockout mice exhibit a smaller hippocampus and shortened dentate gyrus blades from as early as P7. Moreover, the analysis of cellular populations within the dentate gyrus revealed reduced stem cell, neuroblast and neuronal numbers and abnormal neuroblast morphology. Collectively, these findings highlight the critical role played by USP9X in the normal morphological development of the postnatal dentate gyrus

    Abstract 145: Hyperacute Virtual Reality Augmented Rehabilitation (VRAR) in the Neurological ICU: A Safety and Feasibility Study

    No full text
    Introduction Virtual reality (VR) has shown great promise in stroke rehabilitation, providing interactive exercises that target motor and cognitive impairments with minimal adverse events and positive outcomes in improving motor function, balance, and patient motivation. However, most post‐stroke rehabilitation focuses on recovery after discharge, emphasizing the need for efficient interventions like VR to make the most of limited hospital rehab time for stroke survivors. This study aimed to evaluate the safety and feasibility of incorporating hyperacute virtual reality augmented rehabilitation (VRAR) as part of acute stroke care. Methods A prospective, proof‐of‐concept study was conducted with 13 eligible patients who experienced hemorrhagic or ischemic stroke between July 1st, 2021, and January 1st, 2022. Enrolled patients received VRAR in addition to the standard‐of‐care rehabilitation. Patients with dementia, expressive aphasia, delirium, or were unable to participate in physical therapy/ utilize the virtual reality hardware were excluded. Demographic data, functional scores, and complications were collected. Results Of the 13 patients who used the VRAR rehabilitation program, ten completed up to three visits. The cohort consisted of 50% male patients with a mean age of 73.6 years. Half of the patients had a primary diagnosis of ischemic stroke, while the rest were diagnosed with either hemorrhagic stroke (30%) or transient ischemic attack (20%). The mean length of hospital stay was 11.1 days, and the median time from admission to rehabilitation was 4 days. Most patients (80%) were discharged to outpatient rehabilitation, while 20% were discharged home. The median number of sessions was one, with four patients using the VRAR program multiple times. Despite the withdrawal of two patients (15.4%) who expressed mild discontent, there were no adverse events reported during the use of the VRAR rehabilitation program. Conclusion The findings of this study offer evidence backing the safety and feasibility of integrating VRAR as a supplementary tool in hyperacute stroke care. These results underscore the potential of VR therapy as a promising addition to conventional stroke rehabilitation methods

    NFIX-mediated inhibition of neuroblast branching regulates migration within the adult mouse ventricular–subventricular zone

    No full text
    Understanding the migration of newborn neurons within the brain presents a major challenge in contemporary biology. Neuronal migration is widespread within the developing brain but is also important within the adult brain. For instance, stem cells within the ventricular-subventricular zone (V-SVZ) and the subgranular zone of dentate gyrus of the adult rodent brain produce neuroblasts that migrate to the olfactory bulb and granule cell layer of the dentate gyrus, respectively, where they regulate key brain functions including innate olfactory responses, learning, and memory. Critically, our understanding of the factors mediating neuroblast migration remains limited. The transcription factor nuclear factor I X (NFIX) has previously been implicated in embryonic cortical development. Here, we employed conditional ablation of Nfix from the adult mouse brain and demonstrated that the removal of this gene from either neural stem and progenitor cells, or neuroblasts, within the V-SVZ culminated in neuroblast migration defects. Mechanistically, we identified aberrant neuroblast branching, due in part to increased expression of the guanylyl cyclase natriuretic peptide receptor 2 (Npr2), as a factor contributing to abnormal migration in Nfix-deficient adult mice. Collectively, these data provide new insights into how neuroblast migration is regulated at a transcriptional level within the adult brain
    corecore