642 research outputs found

    Colour-Flavour Locked Quark Stars in Light of the Compact Object in HESS J1731-347 and the GW190814 Event

    Full text link
    The central compact object within HESS J1731- 347 possesses unique mass and radius properties that renders it a compelling candidate for a self-bound star. In this research, we examine the capability of quark stars composed of colour superconducting quark matter to explain the latter object by using its marginalised posterior distribution and imposing it as a constraint on the relevant parameter space. Namely, we investigate quark matter for Nf=2,3N_f=2,3 in the colour superconducting phase, incorporating perturbative QCD corrections, and we derive their properties accordingly. The utilised thermodynamic potential of this work possesses an MIT bag model formalism with the parameters being established as flavour-independent. In this instance, we conclude the favour of 3-flavour over 2-flavour colour superconducting quark matter, isolating our interest on the former. The parameter space is further confined due to the additional requirement for a high maximum mass (MTOV≥2.6M⊙M_{\text{TOV}} \geq 2.6 M_{\odot}), accounting for GW190814190814's secondary companion. We pay a significant attention on the speed of sound and the trace anomaly (proposed as a measure of conformality [\href{https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.129.252702}{10.1103/PhysRevLett.129.252702}]). We conclude that it is possible for colour-flavour locked quark stars to reach high masses without violating the conformal bound or the ⟨Θ⟩μB≥0\langle \Theta \rangle _{\mu_B} \geq 0 if the quartic coefficient value α4\alpha_4 does not exceed an upper limit which is solely dependent on the established MTOVM_{\text{TOV}}. For MTOV=2.6M⊙M_{\text{TOV}}=2.6 M_{\odot}, we find that the limit reads α4≤0.594\alpha_4 \leq 0.594. Lastly, a further study takes place on the agreement of colour-flavour locked quark stars with additional astrophysical objects including the GW170817170817 and GW190425190425 events, followed by a relevant discussion.Comment: 13 pages, 10 figures, 1 tabl

    The Electron Glass in a Switchable Mirror: Relaxation, Aging and Universality

    Full text link
    The rare earth hydride YH3−δ_{3-\delta} can be tuned through the metal-insulator transition both by changing δ\delta and by illumination with ultraviolet light. The transition is dominated by strong electron-electron interactions, with transport in the insulator sensitive to both a Coulomb gap and persistent quantum fluctuations. Via a systematic variation of UV illumination time, photon flux, Coulomb gap depth, and temperature, we demonstrate that polycrystalline YH3−δ_{3-\delta} serves as a model system for studying the properties of the interacting electron glass. Prominent among its features are logarithmic relaxation, aging, and universal scaling of the conductivity

    Reply to the Comment by B. Andresen

    Full text link
    All the comments made by Andresen's comments are replied and are shown not to be pertinent. The original discussions [ABE S., Europhys. Lett. 90 (2010) 50004] about the absence of nonextensive statistical mechanics with q-entropies for classical continuous systems are reinforced.Comment: 5 pages. This is Reply to B. Andresen's Comment on the paper entitled "Essential discreteness in generalized thermostatistics with non-logarithmic entropy", Europhys. Lett. 90 (2010) 5000

    De Sitter Cosmic Strings and Supersymmetry

    Full text link
    We study massive spinor fields in the geometry of a straight cosmic string in a de Sitter background. We find a hidden N=2 supersymmetry in the fermionic solutions of the equations of motion. We connect the zero mode solutions to the heat-kernel regularized Witten index of the supersymmetric algebra.Comment: Version similar to the one accepted by General Relativity and Gravitatio

    Kaluza-Klein Pistons with non-Commutative Extra Dimensions

    Full text link
    We calculate the scalar Casimir energy and Casimir force for a R3×NR^3\times N Kaluza-Klein piston setup in which the extra dimensional space NN contains a non-commutative 2-sphere, SFZS_{FZ}. The cases to be studied are Td×SFZT^d\times S_{FZ} and SFZS_{FZ} respectively as extra dimensional spaces, with TdT^d the dd dimensional commutative torus. The validity of the results and the regularization that the piston setup offers are examined in both cases. Finally we examine the 1-loop corrected Casimir energy for one piston chamber, due to the self interacting scalar field in the non-commutative geometry. The computation is done within some approximations. We compare this case for the same calculation done in Minkowski spacetime MDM^D. A discussion on the stabilization of the extra dimensional space within the piston setup follows at the end of the article.Comment: 22 page

    A Search for Correlation of Ultra-High Energy Cosmic Rays with IRAS-PSCz and 2MASS-6dF Galaxies

    Full text link
    We study the arrival directions of 69 ultra-high energy cosmic rays (UHECRs) observed at the Pierre Auger Observatory (PAO) with energies exceeding 55 EeV. We investigate whether the UHECRs exhibit the anisotropy signal expected if the primary particles are protons that originate in galaxies in the local universe, or in sources correlated with these galaxies. We cross-correlate the UHECR arrival directions with the positions of IRAS-PSCz and 2MASS-6dF galaxies taking into account particle energy losses during propagation. This is the first time that the 6dF survey is used in a search for the sources of UHECRs and the first time that the PSCz survey is used with the full 69 PAO events. The observed cross-correlation signal is larger for the PAO UHECRs than for 94% (98%) of realisations from an isotropic distribution when cross-correlated with the PSCz (6dF). On the other hand the observed cross-correlation signal is lower than that expected from 85% of realisations, had the UHECRs originated in galaxies in either survey. The observed cross-correlation signal does exceed that expected by 50% of the realisations if the UHECRs are randomly deflected by intervening magnetic fields by 5 degrees or more. We propose a new method of analysing the expected anisotropy signal, by dividing the predicted UHECR source distribution into equal predicted flux radial shells, which can help localise and constrain the properties of UHECR sources. We find that the 69 PAO events are consistent with isotropy in the nearest of three shells we define, whereas there is weak evidence for correlation with the predicted source distribution in the two more distant shells in which the galaxy distribution is less anisotropic.Comment: 23 pages, version published in JCA

    Wavefunctions and the Point of E8 in F-theory

    Get PDF
    In F-theory GUTs interactions between fields are typically localised at points of enhanced symmetry in the internal dimensions implying that the coefficient of the associated operator can be studied using a local wavefunctions overlap calculation. Some F-theory SU(5) GUT theories may exhibit a maximum symmetry enhancement at a point to E8, and in this case all the operators of the theory can be associated to the same point. We take initial steps towards the study of operators in such theories. We calculate wavefunctions and their overlaps around a general point of enhancement and establish constraints on the local form of the fluxes. We then apply the general results to a simple model at a point of E8 enhancement and calculate some example operators such as Yukawa couplings and dimension-five couplings that can lead to proton decay.Comment: 46 page

    The imprints of superstatistics in multiparticle production processes

    Full text link
    We provide an update of the overview of imprints of Tsallis nonextensive statistics seen in a multiparticle production processes. They reveal an ubiquitous presence of power law distributions of different variables characterized by the nonextensivity parameter q > 1. In nuclear collisions one additionally observes a q-dependence of the multiplicity fluctuations reflecting the finiteness of the hadronizing source. We present sum rules connecting parameters q obtained from an analysis of different observables, which allows us to combine different kinds of fluctuations seen in the data and analyze an ensemble in which the energy (E), temperature (T) and multiplicity (N) can all fluctuate. This results in a generalization of the so called Lindhard's thermodynamic uncertainty relation. Finally, based on the example of nucleus-nucleus collisions (treated as a quasi-superposition of nucleon-nucleon collisions) we demonstrate that, for the standard Tsallis entropy with degree of nonextensivity q < 1, the corresponding standard Tsallis distribution is described by q' = 2 - q > 1.Comment: 12 pages, 3 figures. Based on invited talk given by Z.Wlodarczyk at SigmaPhi2011 conference, Larnaka, Cyprus, 11-15 July 2011. To be published in Cent. Eur. J. Phys. (2011
    • …
    corecore