44 research outputs found

    Earth Observation Technologies: Low-End-Market Disruptive Innovation

    Get PDF
    After decades of traditional space businesses, the space paradigm is changing. New approaches to more efficient missions in terms of costs, design, and manufacturing processes are fostered. For instance, placing big constellations of micro- and nano-satellites in Low Earth Orbit and Very Low Earth Orbit (LEO and VLEO) enables the space community to obtain a huge amount of data in near real-time with an unprecedented temporal resolution. Beyond technology innovations, other drivers promote innovation in the space sector like the increasing demand for Earth Observation (EO) data by the commercial sector. Perez et al. stated that the EO industry is the second market in terms of operative satellites (661 units), micro- and nano-satellites being the higher share of them (61%). Technological and market drivers encourage the emergence of new start-ups in the space environment like Skybox, OneWeb, Telesat, Planet, and OpenCosmos, among others, with novel business models that change the accessibility, affordability, ownership, and commercialization of space products and services. This chapter shows some results of the H2020 DISCOVERER (DISruptive teChnOlogies for VERy low Earth oRbit platforms) Project and focuses on understanding how micro- and nano-satellites have been disrupting the EO market in front of traditional platforms

    A review of gas-surface interaction models for orbital aerodynamics applications

    Get PDF
    Renewed interest in Very Low Earth Orbits (VLEO) - i.e. altitudes below 450 km - has led to an increased demand for accurate environment characterisation and aerodynamic force prediction. While the former requires knowledge of the mechanisms that drive density variations in the thermosphere, the latter also depends on the interactions between the gas-particles in the residual atmosphere and the surfaces exposed to the flow. The determination of the aerodynamic coefficients is hindered by the numerous uncertainties that characterise the physical processes occurring at the exposed surfaces. Several models have been produced over the last 60 years with the intent of combining accuracy with relatively simple implementations. In this paper the most popular models have been selected and reviewed using as discriminating factors relevance with regards to orbital aerodynamics applications and theoretical agreement with gas-beam experimental data. More sophisticated models were neglected, since their increased accuracy is generally accompanied by a substantial increase in computation times which is likely to be unsuitable for most space engineering applications. For the sake of clarity, a distinction was introduced between physical and scattering kernel theory based gas-surface interaction models. The physical model category comprises the Hard Cube model, the Soft Cube model and the Washboard model, while the scattering kernel family consists of the Maxwell model, the Nocilla-Hurlbut-Sherman model and the Cercignani-Lampis-Lord model. Limits and assets of each model have been discussed with regards to the context of this paper. Wherever possible, comments have been provided to help the reader to identify possible future challenges for gas-surface interaction science with regards to orbital aerodynamic applications

    Quantification of forces on the manipulation of individual nano-objects in "in situ" experiments of electron microscopy

    No full text
    Orientador: Daniel Mario UgarteDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Fisica Gleb WataghinResumo: O estudo de nano-sistemas tem atraído grande atenção nos últimos anos, principalmente devido às suas possíveis e novas aplicações tecnológicas. Muitos esforços têm sido feitos nessa área, porém há ainda várias questões em aberto com relação à compreensão de nanoestruturas. Um dos principais desafios diz respeito à manipulação e o posicionamento controlado de nano-objetos, juntamente com a quantificação das forças envolvidas e a caracterização das propriedades mecânicas em nanoescala. Muitos avanços foram atingidos com a combinação de técnicas de microscopia de força atômica (AFM). Infelizmente nestes experimentos o sensor de forças também é utilizado para gerar uma imagem da amostra. Assim não é possível visualizar o nano-sistema ao mesmo tempo em que ele é submetido a algum esforço mecânico. Outros experimentos são realizados in situ em microscópios eletrônicos onde são utilizados porta-amostras especiais com sensores de força de microscópios de AFM.Combina-se dessa forma a capacidade de se observar diretamente o nano-sistema com a de aplicar e medir forças em sistemas nanométricos. Nesta dissertação é estudada então uma alternativa para a fabricação de um sensor de forças baseado no uso de diapasões de quartzo (tuning forks). Esse sensor deverá ser utilizado em experimentos de nanomanipulação. Este projeto abordou todos os aspectos necessários à instrumentação, desenho, construção e implementação do sensor. O sensor foi acoplado a um nanomanipulador que opera dentro de um microscópio eletrônico de varredura de alta resolução. Com essa montagem, realizaram-se experimentos preliminares de manipulação e deformação de nanofios semicondutores (InP, de alguns mícrons de comprimento, e de 50-200 nm de diamêtro). As forças foram quantificadas baseando-se nas imagens de microscopia dos fios sendo deformados e utilizando um modelo teórico de deformações elásticas. Esses valores foram correlacionados com as variações das curvas de ressonância do tuning fork, para finalmente obter a calibração do sensor de forças. O sistema permite medir forças com uma sensibilidade de 0:5m N baseando-se somente nas mudanças dos sinais elétricos utilizados para alimentar o diapasão de quartzoAbstract: The study of nanosystems has attracted great attention in recent years, mainly due to their novel possible technological applications. Many efforts have been made in this area, however there are still several open questions concerning the comprehension of such systems. One of the biggest challenges is the manipulation and the controlled positioning of nano-objects, together with the quantification of the forces involved and the mechanical characterization at the nanoscale. Many advances have been achieved with the combination of atomic force microscopy (AFM) techniques. Unfortunately, in these experiments the force sensor is also applied to generate the sample's images. It doesn't allow the system's visualization simultaneously with the stress application. Other experiments are performed in situ electron microscopes where special sample-holders with AFM cantilevers are used. It combines then the ability of observing the nanosystem directly to the possibility of applying and measuring forces in nanometric scale. In this dissertation it is studied an alternative to the fabrication of a force sensor based on quartz tuning forks. This sensor will be used on nanomanipulation experiments. The project covered all the aspects necessary to the sensor's instrumentation, design, construction and implementation. The sensor was attached to a nanomanipulator that operates inside a high resolution scanning electron microscope. Semiconductor nanowires (InP, a few microns in length and 50-200nm in diameter) were manipulated and deformed with this experimental setup. The force quantification was based on microscopy images of the deformed nanowires and on theoretical model of elastic deformations. The force values were correlated with the variations of tuning fork's resonant curves in order to obtain a calibration curve for the sensor. Sensitivity of 0:5m N were achieved based only on changes on electrical signals fed to the quartz tuning forkMestradoFísica da Matéria CondensadaMestre em Físic

    Development of a sensor for quantification of forces in situ electron microscopy experiments

    No full text
    Orientadores: Daniel Mario Ugarte, Varlei RodriguesTese (doutorado) - Universidade Estadual de Campinas, Instituto de Física Gleb WataghinResumo: O estudo de nano-sistemas tem atraído grande atenção nos últimos anos, principalmente devido às suas possíveis e novas aplicações tecnológicas. Muitos esforços tem sido feitos nessa área, porém há ainda várias questões em aberto com relação a compreensão de nanoestruturas. Um dos principais desafios diz respeito à manipulação e o posicionamento controlado de nanoobjetos, juntamente com a quantificação das forças envolvidas e a caracterização das propriedades mecânicas em nanoescala. Muitos avanços foram atingidos combinando-se a microscopia eletrônica de varredura (SEM) e a de força atômica (AFM), realizando experimentos in situ que aproveitam a resolução e a formação de imagens do SEM, e a capacidade de medir forças em sistemas nanométricos do AFM. Nesta tese discutimos a quantificação de forças de intensidade < N, aplicadas em experimentos de nanomanipulação in situ de SEM, através do desenvolvimento de um sensor baseado no uso de diapasões de quartzo (tuning fork). Abordamos os aspectos técnicos relevantes à construção do sensor e seu funcionamento, desde o problema de se medir forças da ordem de nN em nano-objetos individuais, até sua aplicação em sistemas dessa dimensão. Pontos fundamentais do desenvolvimento como a definição da sua configuração, da eletrônica de aquisição e da metodologia de calibração e de aplicação são tratados em detalhe. Um processo de calibração baseado na deformação in situ de cantilevers de AFM é utilizado para permitir a quantificação da força. Subsequentemente a medida dos valores é feita exclusivamente através das curvas de ressonância do tuning fork, independendo completamente das imagens de microscopia. Forças no intervalo de 1-100 nN foram medidas, e a aplicação do sensor foi dada no intervalo de 4-40 nN. A precisão obtida na quantificação foi de alguns nN, ?F ?1-4 nN. O sistema foi testado em experimentos de deformação de bundles de nanotubos de carbono in situ em um SEM, nos quais medimos quantitativamente a influência das forças de van der Waals no atrito dinâmico durante o escorregamento entre nanotubos. As forças obtidas nesses experimentos variaram entre 14-35 nNAbstract: The study of nanosystems has attracted many attention in recent years, mainly due to their novel possible technological applications. Many efforts have been made in this area, however several open questions regarding the comprehension of such structures remain. A major challenge concerns the manipulation and the controlled positioning of nano-objects, together with the quantification of the involved forces and the mechanical characterization at the nanoscale. Many advances have been achieved by combining the scanning electron microscopy (SEM) and the atomic force microscope (AFM), conducting thus in situ experiments that profit from SEM¿s resolution and imaging and from AFM¿s ability to measure forces in nanoscale systems. In this thesis we treat the quantification of forces with intensity < N applied during in situ nanomanipulation experiments performed inside a SEM by developing a force sensor based on quartz tuning forks. Our approach comprises the technical aspects relevant to the sensor¿s assembly and its operation, from the issue of measuring forces of the order of nN on individual nano-objects, to its application on nanosystems. Key points of development such as the sensor¿s design, electronics, calibration and applications are described in details. A calibration process based on the in situ bending AFM cantilevers is carried out to enable the force quantification. Subsequently the force measurement is done exclusively by the TF¿s resonance curve, being completely independent of the microscopy images. Forces in the range of 1-100 nN were measured, and the sensor¿s application was considered between 4 nN and 40 nN. The precison acquired was of a few nN, ?F ?1-4 nN. To test the sensor in situ strain experiments were performed on bundles of carbon nanotubes from which we measured quantitatively the van der Waals¿ influence on the dynamic friction during the sliding of adjacent bundles. The forces acquired were then in the range of 14-35 nNDoutoradoFísicaDoutor em Ciência

    Design and development of a hyper-thermal atomic oxygen wind tunnel facility

    No full text
    A hyper-thermal orbital aerodynamics test facility is described. The Rarefied Orbital Aerodynamics Research facility(ROAR)is a dedicated apparatus designedto simulate the atmospheric flow in very low Earth orbits(VLEO) to investigate the impact different material properties have on gas-surface interactions, and determine the aerodynamic properties of materials from the reemitted gas distribution. The main characteristics observed in VLEO to be reproduced are the free molecular flow regime and the flux of oxygen atoms at orbital velocities impinging on the spacecraft surface. This is accomplished by combining an ultra-high vacuum system with a hyper-thermal oxygen atoms generator. Materials performance will be assessed via a scattering experiment in which an atomic oxygen beam is incident on the surface of a test sample and the scattered species are recorded by mass spectrometers. The design of theexperiment is discussed, from the specification of the vacuum components to the generation of oxygen atoms and their detection.The DISCOVERER project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 737183Postprint (published version

    ROAR - A ground-based experimental facility for orbital aerodynamics research

    No full text
    DISCOVERER is a European Commission funded project aiming to revolutionise satellite applications in Very Low Earth Orbits (VLEO). The project encompasses many different aspects of the requirements for sustainable operation, including developments on geometric designs, aerodynamic attitude and orbital control, improvement of intake designs for atmosphere breathing electric propulsion, commercial viability, and development of novel materials. This paper is focused solely on the description of the experimental facility designed and constructed to perform ground testing of materials, characterising their behaviour in conditions similar to those found in VLEO. ROAR, Rarefied Orbital Aerodynamics Research facility, is an experiment designed to provide a controlled environment with free molecular flow and atomic oxygen flux comparable to the real orbital environment. ROAR is a novel experiment, with the objective of providing better and deeper understanding of the gas-surface interactions between the material and the atmosphere, rather than other atomic oxygen exposure facilities which are mainly focused on erosion studies. The system is comprised of three major parts, (i) ultrahigh vacuum setup, (ii) hyperthermal oxygen atom generator (HOAG) and (iii) ion-neutral mass spectrometers (INMS). Each individual part will be considered, their performance analysed based on experimental data acquired during the characterisation and commissioning, thus leading to a complete description of ROAR’s capabilities. Among the key parameters to be discussed are operational pressure, atomic oxygen flux, beam shape and energy spread, mass resolution, signal-to-noise ratio and experimental methodology.This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 737183.Peer ReviewedPostprint (published version

    Ground-based experimental facility for orbital aerodynamics research: design, construction and characterisation

    No full text
    In very low Earth orbits (VLEO), below 450 km altitude, the aerodynamic properties of satellites are primarily determined by the flow regime, free molecular flow, and the interaction of atomic oxygen with the surfacesof the spacecraft. The Rarefied Orbital Aerodynamics Research (ROAR) facility is a novel experimental facility designed to simulate these conditions in a controlled environment to characterise the aerodynamic properties of materials. It is built as part of DISCOVERER, a Horizon 2020 project developing the different technologies required to enable the sustainable operation of satellites in VLEO. Because ROAR isn’t intended to perform erosion studies, it differs quite significantly from other atomic oxygen exposure experiments and its characteristics are discussed in this work. ROAR consists of an ultrahigh vacuum system, responsible for generating the free molecular flow conditions, a source of hyperthermal oxygen atoms at orbital velocities, and mass spectrometers; the latter used to characterise the gas-surface interactions, and therefore the material’s aerodynamic performance. This paperincludesa description of ROAR’s main components, together with the experimental methodology for materials testing and early results. Among the main parameters to be considered are atomic oxygen flux, beam shape and energy spread, mass resolution, and signal-to-noise ratio.This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 737183. This publication reflects only the author's view.Postprint (published version
    corecore