12 research outputs found

    Security Clustering: A Network-wide Secure Computing Mechanism in Pervasive Computing

    Get PDF
    Abstract. In this paper, we introduce a new security paradigm, called security clustering, for pervasive computing environment that enables network-wide defend against increasing evolutionary attacks on the heterogeneous network and hosts. Security clustering make use of dynamic security context exchange between cluster members and distributed information sharing to achieve scalable and efficient cooperation

    An Efficient Resource Management Protocol for Handling Small Resource in Wireless Sensor Networks

    No full text
    Copyright © 2013 Wan-Hee Cho et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Wireless sensor nodeswith single chipsmay have insufficient resources for certain applications.We propose a resourcemanagement protocol for applications with constrained resources to improve effectiveness by borrowing resources from a resource management server. 1

    Predictive Mobility Support with Secure Context Management for Vehicular Users *

    No full text
    Abstract. This paper presents a predictive mobility management framework with the secure context management in mobile networks. We devised the authentication method for seamless handovers that exploit the knowledge of the mobility prediction. Previous Access Router (AR) forwards the preestablished context information to the new AR in the predicted target wireless cell where MN might move in the near future. Therefore the context for autonomous services is available in the right place at right time

    Effects of sway and roll excitations on sloshing loads in a KC-1 membrane LNG tank

    No full text
    This study investigates the effects of sway and roll excitations on sloshing liquid loads in a tank, using Ansys Fluent software. The model considered in the study is a 1:50 scaled membrane-type tank, based on a KC-1 membrane LNG tank designed by Korea Gas Corporation (KOGAS). The volume of fluid (VOF) method is used to track the free surface inside the tank, and the standard k-ε model is applied to express the turbulent flow of the liquid. To explore the motion of the tank under excitation, a user-defined function (UDF) and a dynamic mesh technique are employed to control the external forces exerted on the tank through its motion. The results, in the form of time series data on the sloshing pressures in the tank under pure sway, roll, and coupled sway-roll, are analysed, with specific ranges for the excitation amplitudes and frequencies. We show that variations in excitation frequency and amplitude significantly influence the sloshing loads. Sloshing loads are found to intensify when the excitation frequency matches the tank’s primary natural frequency, 1.0 ω'1. Furthermore, with coupled sway-roll excitations, the sloshing loads are weakened when the sway and roll are in-phase and are intensified when these are out-of-phase. Fast Fourier transform analysis provides insights into the frequency domain, showing that the dominant frequency is 0.88 Hz and it is approximately equal to the tank’s primary natural frequency, 1.0 ω'1

    Effects of Sway and Roll Excitations on Sloshing Loads in a KC-1 Membrane LNG Tank

    No full text
    This study investigates the effects of sway and roll excitations on sloshing liquid loads in a tank, using Ansys Fluent software. The model considered in the study is a 1:50 scaled membrane-type tank, based on a KC-1 membrane LNG tank designed by Korea Gas Corporation (KOGAS). The volume of fluid (VOF) method is used to track the free surface inside the tank, and the standard k-ε model is applied to express the turbulent flow of the liquid. To explore the motion of the tank under excitation, a user-defined function (UDF) and a dynamic mesh technique are employed to control the external forces exerted on the tank through its motion. The results, in the form of time series data on the sloshing pressures in the tank under pure sway, roll, and coupled sway-roll, are analysed, with specific ranges for the excitation amplitudes and frequencies. We show that variations in excitation frequency and amplitude significantly influence the sloshing loads. Sloshing loads are found to intensify when the excitation frequency matches the tank’s primary natural frequency, 1.0 ω1′. Furthermore, with coupled sway-roll excitations, the sloshing loads are weakened when the sway and roll are in-phase and are intensified when these are out-of-phase. Fast Fourier transform analysis provides insights into the frequency domain, showing that the dominant frequency is 0.88 Hz and it is approximately equal to the tank’s primary natural frequency, 1.0 ω1′

    Properties of Polymer Nanocomposites Useful for Dental Restoration

    No full text
    Visible-light activated polymer nanocomposites (PNC) were designed to be used for dental restoration. Hybrid-filler composed of barium silicate and nano-sized silica was adopted as a filler system. To improve the interfacial be havior of the resin matrix of bisphenol A glycerolate methacrylate/triethyleneglycol dimethacrylate, the surface of filler was hydrophobically treated with a silane coupling agent. Mechanical properties of PNC were investigated by measuring the abrasion resistance, and it was discovered that PNC showed excellent properties with an increase of nanofiller content. However, the polymerization shrinkage was consistently maintained under 3 vol% and the shrinkage continued even after photo-polymerization. In addition, a slight color difference between PNC specimens was observed with increase of nanofiller content
    corecore