939 research outputs found
The magnetic properties of Hf and Hf in the strong coupling deformed model
This paper reports NMR measurements of the magnetic dipole moments of two
high-K isomers, the 37/2, 51.4 m, 2740 keV state in Hf and the
8, 5.5 h, 1142 keV state in Hf by the method of on-line nuclear
orientation. Also included are results on the angular distributions of gamma
transitions in the decay of the Hf isotope. These yield high
precision E2/M1 multipole mixing ratios for transitions in bands built on the
23/2, 1.1 s, isomer at 1315 keV and on the 9/2, 0.663 ns, isomer at 321
keV. The new results are discussed in the light of the recently reported
finding of systematic dependence of the behavior of the g parameter
upon the quasi-proton and quasi-neutron make up of high-K isomeric states in
this region.Comment: 9 pages, 9 figures, accepted for publication in Physical Review
Orbifold Models in M-Theory
Among orbifold compactifications of -theory, we examine
models containing the particle physics Standard Model in four-dimensional
spacetimes, which appear as fixed subspaces of the ten-dimensional spacetimes
at each end of the interval, , spanning the
dimension. Using the projection to break the gauge symmetry in each
of the four-planes and a limiting relation to corresponding heterotic string
compactifications, we discuss the restrictions on the possible resulting gauge
field and matter spectra. In particular, some of the states are non-local: they
connect two four-dimensional Worlds across the dimension.
We illustrate our programmable calculations of the matter field spectrum,
including the anomalous U(1) factor which satisfies a universal Green-Schwarz
relation, discuss a Dynkin diagram technique to showcase a model with
gauge symmetry, and discuss generalizations to
higher order orbifolds.Comment: 23 pages, 2 figures, 4 tables; LaTeX 3 time
Topological phase diagram and saddle point singularity in a tunable topological crystalline insulator
We report the evolution of the surface electronic structure and surface
material properties of a topological crystalline insulator (TCI) Pb1-xSnxSe as
a function of various material parameters including composition x, temperature
T and crystal structure. Our spectroscopic data demonstrate the electronic
groundstate condition for the saddle point singularity, the tunability of
surface chemical potential, and the surface states' response to circularly
polarized light. Our results show that each material parameter can tune the
system between trivial and topological phase in a distinct way unlike as seen
in Bi2Se3 and related compounds, leading to a rich and unique topological phase
diagram. Our systematic studies of the TCI Pb1-xSnxSe are valuable materials
guide to realize new topological phenomena.Comment: 10 pages, 7 figures. Expanded version of arXiv:1403.156
Anaplastic carcinoma of the pancreas producing granulocyte-colony stimulating factor: a case report
<p>Abstract</p> <p>Introduction</p> <p>The granulocyte-colony stimulating factor-producing tumor was first reported in 1977, however, anaplastic pleomorphic type carcinoma of the pancreas producing granulocyte-colony stimulating factor is still rare.</p> <p>Case presentation</p> <p>A 63-year-old man was admitted to our hospital with body weight loss (-10 kg during months) and upper abdominal pain from 3 weeks. Abdominal computed tomography demonstrated a pancreatic tumor 10 cm in size and multiple low-density areas in the liver. On admission, the peripheral leukocyte count was elevated to 91,500/mm<sup>3 </sup>and the serum concentration of granulocyte-colony stimulating factor was 134 pg/mL (normal, < 18.1 pg/mL). Based on liver biopsy findings, the tumor was classified as an anaplastic pleomorphic-type carcinoma. Immunohistochemical staining showed that pancreatic carcinoma cells were positive for granulocyte-colony stimulating factor. The patient developed interstitial pneumonia, probably caused by granulocyte-colony stimulating factor, and died 11 days after admission.</p> <p>Conclusion</p> <p>This is a rare case report of anaplastic pleomorphic-type carcinoma of the pancreas producing granulocyte-colony stimulating factor and confirmed by immunohistochemistry.</p
Influence of SIGLEC9 polymorphisms on COPD phenotypes including exacerbation frequency.
BACKGROUND AND OBJECTIVE: The exacerbation-prone phenotype of COPD is particularly important, as exacerbations lead to poor quality of life and disease progression. We previously found that COPD patients who lack Siglec-14, a myeloid cell protein that recognizes bacteria and triggers inflammatory responses, are less prone to exacerbation. We hypothesized that the variations in other SIGLEC genes could also influence COPD exacerbation frequency, and investigated the association between SIGLEC9 polymorphisms and the exacerbation-prone phenotype of COPD. METHODS: We examined whether SIGLEC9 polymorphisms affect the frequency of COPD exacerbation in 135 subjects within our study population, and also analysed the correlation between the genotypes and the severity of airflow obstruction and emphysema in 362 Japanese smokers including 244 COPD patients. The association between these single nucleotide polymorphisms (SNPs) and COPD phenotypes were also assessed in a Caucasian population of ECLIPSE study. The effects of these coding SNPs (cSNPs) on Siglec-9 protein functions were analysed using in vitro assays. RESULTS: The G allele of rs2075803 and rs2075803 G/rs2258983 A(GA) haplotype in SIGLEC9 was associated with higher frequency of exacerbations and the extent of emphysema in COPD. These results did not replicate in the ECLIPSE study. A myeloid cell line expressing the Siglec-9 variant corresponding to GA haplotype produced more TNF-α than the one expressing the variant corresponding to the other major haplotype. CONCLUSION: The SIGLEC9 rs2075803 G/rs2258983 A haplotype, which corresponds to a Siglec-9 variant that is less effective at suppressing inflammatory response, may be a risk factor for the development of emphysema
Quantum internet using code division multiple access
A crucial open problem in large-scale quantum networks is how to efficiently
transmit quantum data among many pairs of users via a common data-transmission
medium. We propose a solution by developing a quantum code division multiple
access (q-CDMA) approach in which quantum information is chaotically encoded to
spread its spectral content, and then decoded via chaos synchronization to
separate different sender-receiver pairs. In comparison to other existing
approaches, such as frequency division multiple access (FDMA), the proposed
q-CDMA can greatly increase the information rates per channel used, especially
for very noisy quantum channels.Comment: 29 pages, 6 figure
- …