226 research outputs found

    High-precision molecular dynamics simulation of UO2-PuO2: superionic transition in uranium dioxide

    Full text link
    Our series of articles is devoted to high-precision molecular dynamics simulation of mixed actinide-oxide (MOX) fuel in the rigid ions approximation using high-performance graphics processors (GPU). In this article we assess the 10 most relevant interatomic sets of pair potential (SPP) by reproduction of the Bredig superionic phase transition (anion sublattice premelting) in uranium dioxide. The measurements carried out in a wide temperature range from 300K up to melting point with 1K accuracy allowed reliable detection of this phase transition with each SPP. The {\lambda}-peaks obtained are smoother and wider than it was assumed previously. In addition, for the first time a pressure dependence of the {\lambda}-peak characteristics was measured, in a range from -5 GPa to 5 GPa its amplitudes had parabolic plot and temperatures had linear (that is similar to the Clausius-Clapeyron equation for melting temperature).Comment: 7 pages, 6 figures, 1 tabl

    A semi-active H∞ control strategy with application to the vibration suppression of nonlinear high-rise building under earthquake excitations

    Get PDF
    Different from previous researches which mostly focused on linear response control of seismically excited high-rise buildings, this study aims to control nonlinear seismic response of high-rise buildings. To this end, a semi-active control strategy, in which H∞ control algorithm is used and magneto-rheological dampers are employed for an actuator, is presented to suppress the nonlinear vibration. In this strategy, a modified Kalman–Bucy observer which is suitable for the proposed semi-active strategy is developed to obtain the state vector from the measured semi-active control force and acceleration feedback, taking into account of the effects of nonlinearity, disturbance and uncertainty of controlled system parameters by the observed nonlinear accelerations. Then, the proposed semi-active H∞ control strategy is applied to the ASCE 20-story benchmark building when subjected to earthquake excitation and compared with the other control approaches by some control criteria. It is indicated that the proposed semi-active H∞ control strategy provides much better control performances by comparison with the semi-active MPC and Clipped-LQG control approaches, and can reduce nonlinear seismic response and minimize the damage in the buildings. Besides, it enhances the reliability of the control performance when compared with the active control strategy. Thus, the proposed semi-active H∞ control strategy is suitable for suppressing the nonlinear vibration of high-rise buildings

    Solitary osteochondroma of the twelfth rib with intraspinal extension and cord compression in a middle-aged patient

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Osteochondroma is a disease of growing bone and thus typically presents in younger patients. It has rarely been described in middle-aged and elderly patients. Data on the occurrence of osteochondroma show that the reported incidence of costal osteochondroma is very low. Moreover, costal osteochondroma arising at the costovertebral junction with neural foraminal extension and spinal cord compression is extremely rare.</p> <p>Case presentation</p> <p>This study reports the case of a 58-year-old patient with a solitary osteochondroma of the 12th rib with intraspinal extension and spinal cord compression. The clinical history, plain radiographs, computed tomography (CT), magnetic resonance imaging, and pathologic findings of the reported patient have been reviewed. The relevant medical literature has also been reviewed. The patient was treated with surgery for complete tumour excision to avoid tumour recurrence. After surgery, the patient's symptoms improved. An additional CT scan obtained at 1 year after surgery did not show any evidence of recurrence.</p> <p>Conclusions</p> <p>This patient is the oldest patient reported to have this rare form of costal osteochondroma. The age of the patient and the erosion of the adjacent bones raised clinical suspicion of malignancy; therefore, surgical management involved complete tumour excision with thoracolumbar fixation and fusion.</p

    RIG-I Mediates Innate Immune Response in Mouse Neurons Following Japanese Encephalitis Virus Infection

    Get PDF
    Neuroinflammation associated with Japanese encephalitis (JE) is mainly due to the activation of glial cells with subsequent release of proinflammatory mediators from them. The recognition of viral RNA, in part, by the pattern recognition receptor retinoic acid-inducible gene I (RIG-I) has been indicated to have a role in such processes. Even though neurons are also known to express this receptor, its role after JE virus (JEV) infections is yet to be elucidated.Upon infecting murine neuroblastoma cells and primary cortical neurons with JEV the expression profile of key proinflammatory cyto/chemokines were analyzed by qRT-PCR and bead array, both before and after ablation of RIG-I. Immunoblotting was performed to evaluate the levels of key molecules downstream to RIG-I leading to production of proinflammatory mediators. Changes in the intracellular viral antigen expression were confirmed by intracellular staining and immunoblotting. JEV infection induced neuronal expression of IL-6, IL-12p70, MCP-1, IP-10 and TNF-α in a time-dependent manner, which showed significant reduction upon RIG-I ablation. Molecules downstream to RIG-I showed significant changes upon JEV-infection, that were modulated following RIG-I ablation. Ablation of RIG-I in neurons also increased their susceptibility to JEV.In this study we propose that neurons are one of the potential sources of proinflammatory cyto/chemokines in JEV-infected brain that are produced via RIG-I dependent pathways. Ablation of RIG-I in neurons leads to increased viral load and reduced release of the cyto/chemokines

    Heat and charge transport in H2O at ice-giant conditions from ab initio molecular dynamics simulations

    Get PDF
    The impact of the inner structure and thermal history of planets on their observable features, such as luminosity or magnetic field, crucially depends on the poorly known heat and charge transport properties of their internal layers. The thermal and electric conductivities of different phases of water (liquid, solid, and super-ionic) occurring in the interior of ice giant planets, such as Uranus or Neptune, are evaluated from equilibrium ab initio molecular dynamics, leveraging recent progresses in the theory and data analysis of transport in extended systems. The implications of our findings on the evolution models of the ice giants are briefly discussed
    • …
    corecore