29 research outputs found

    Susceptibility to obesity and gallbladder stasis produced by a protein- and fat-enriched diet in male mice compared with female mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The frequency of Japanese subjects over 20 years old with metabolic syndrome is 45.6% in men but just 16.7% in women. The reason why Japanese male subjects are more susceptible to metabolic syndrome than women is unknown. One possibility is the higher frequency of Japanese male subjects (40–70 years old) who had a drinking habit (67%), while that of female subjects was only 25%. In addition, daily fat intake was markedly increased in Japanese subjects (from 9% to 25%), and cholesterol cholelithiasis is one of the most rapidly increasing digestive diseases during the past 50 years. The object of this study is to examine whether a potential sex-related risk factor exists in the manifestation of metabolic syndrome as well as gallstone formation.</p> <p>Methods</p> <p>Gallbladder dysmotility accerelates gallstone formation and gallbladder contraction depends on cholecystokinin (CCK) and its receptor (CCK-1R). We developed CCK-1R gene knockout (-/-) mice. The effects of the fat- and protein- enriched diet OA-2 on body weight, hyperlipidemia, and frequencies of sludge and gallstone formation were examined, and compared between wild-type and CCK-1R(-/-) male and female mice. The OA-2 diet contains slightly higher protein and fat (7.9 % fat and 27.6 % protein) compared with a standard diet (CRF-1) (5.6 % fat and 22.6 % protein), but their total energies are similar. After weaning, CRF-1 was provided until 3 months of age in all animals. Administration of an OA-2 diet was started when age-matched CCK-1R(-/-) and wild-type male and female mice reached maturity, at 3 months of age. Administration of CRF-1 was continued in the rest of the animals. Mice were sacrificed by guillotine at 6 and 12 months of age and the blood was collected to measure plasma levels of triglyceride and cholesterol. The gallbladder was removed and classified as normal (clear gallbladder), clouded (sludge formation), and/or containing gallstone formations.</p> <p>Results</p> <p>As long as CRF-1 was provided, the frequency of sludge and/or gallstone formation in CCK-1R(-/-) male mice was 3 of 8 (35%) and 4 of 9 (45%) in females at 12 months of age, whereas no gallstone formation was observed at 6 months of age. On the other hand, male mice fed OA-2 increased their body weight and plasma lipid concentrations, compared with those fed CRF-1 regardless of genotype. Under the OA-2 diet, sludge and gallstone formation was observed at 6 months of age, not only in CCK-1R(-/-) male mice but also in wild-type male mice. In contrast, parameters in female mice did not differ between the two diets.</p> <p>Conclusion</p> <p>Male mice were more susceptible to protein- and fat-enriched diet-induced obesity than female mice, and hyper-nutritional status accelerated sludge and gallstone formation in male mice.</p

    Comparison between partial ulnar and intercostal nerve transfers for reconstructing elbow flexion in patients with upper brachial plexus injuries

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There have been several reports that partial ulnar transfer (PUNT) is preferable for reconstructing elbow flexion in patients with upper brachial plexus injuries (BPIs) compared with intercostal nerve transfer (ICNT). The purpose of this study was to compare the recovery of elbow flexion between patients subjected to PUNT and patients subjected to ICNT.</p> <p>Methods</p> <p>Sixteen patients (13 men and three women) with BPIs for whom PUNT (eight patients) or ICNT (eight patients) had been performed to restore elbow flexion function were studied. The time required in obtaining M1, M3 (Medical Research Council scale grades recovery) for elbow flexion and a full range of elbow joint movement against gravity with the wrist and fingers extended maximally and the outcomes of a manual muscle test (MMT) for elbow flexion were examined in both groups.</p> <p>Results</p> <p>There were no significant differences between the PUNT and ICNT groups in terms of the age of patients at the time of surgery or the interval between injury and surgery. There were significantly more injured nerve roots in the ICNT group (mean 3.6) than in the PUNT group (mean 2.1) (<it>P </it>= 0.0006). The times required to obtain grades M1 and M3 in elbow flexion were significantly shorter in the PUNT group than in the ICNT group (<it>P </it>= 0.04 for M1 and <it>P </it>= 0.002 for M3). However, there was no significant difference between the two groups in the time required to obtain full flexion of the elbow joint with maximally extended fingers and wrist or in the final MMT scores for elbow flexion.</p> <p>Conclusions</p> <p>PUNT is technically easy, not associated with significant complications, and provides rapid recovery of the elbow flexion. However, separation of elbow flexion from finger and wrist motions needed more time in the PUNT group than in the ICNT group. Although the final mean MMT score for elbow flexion in the PUNT group was greater than in the ICNT group, no statistically significant difference was found between the two groups.</p

    Storage and allogeneic transplantation of peripheral nerve using a green tea polyphenol solution in a canine model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In our previous study, allogeneic-transplanted peripheral nerve segments preserved for one month in a polyphenol solution at 4°C could regenerate nerves in rodents demonstrated the same extent of nerve regeneration as isogeneic fresh nerve grafts. The present study investigated whether the same results could be obtained in a canine model.</p> <p>Methods</p> <p>A sciatic nerve was harvested from a male beagle dog, divided into fascicules of < 1.5 mm diameter, and stored in a polyphenol solution (1 mg/ml) for one month at 4°C. The nerve fascicles were transplanted into 10 female beagle dogs to bridge 3-cm right ulnar nerve gaps. In the left ulnar nerve in each dog, a 3-cm nerve segment was harvested, turned in the opposite direction, and sutured in situ. Starting one day before transplantation, the immunosuppressant FK506 was administered subcutaneously at doses of 0.1 mg/kg daily in four dogs (PA0.1 group), 0.05 mg/kg daily in four dogs (PA0.05 group), or 0.05 mg/kg every other day in two dogs (PA0.025 group). Twelve weeks after surgery, electrophysiological and morphological studies were performed to assess the regeneration of the right and left ulnar nerves. The data for the right ulnar nerve were expressed as percentages relative to the left ulnar nerve. Polymerase chain reaction (PCR) was used to identify the sex-determining region of the Y-chromosome (<it>Sry</it>) and β-actin to investigate whether cells of donor origin remained in the allogeneic nerve segments. FK506 concentration was measured in blood samples taken before the animals were killed.</p> <p>Results</p> <p>The total myelinated axon numbers and amplitudes of the muscle action potentials correlated significantly with the blood FK506 concentration. Few axons were observed in the allogeneic-transplanted nerve segments in the PA0.025 group. PCR showed clear <it>Sry</it>-specific bands in specimens from the PA0.1 and PA0.05 groups but not from the PA0.025 group.</p> <p>Conclusions</p> <p>Successful nerve regeneration was observed in the polyphenol-treated nerve allografts when transplanted in association with a therapeutic dose of FK506. The data indicate that polyphenols can protect nerve tissue from ischemic damage for one month; however, the effects of immune suppression seem insufficient to permit allogeneic transplantation of peripheral nerves in a canine model.</p

    A 100%-complete sequence reveals unusually simple genomic features in the hot-spring red alga Cyanidioschyzon merolae

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>All previously reported eukaryotic nuclear genome sequences have been incomplete, especially in highly repeated units and chromosomal ends. Because repetitive DNA is important for many aspects of biology, complete chromosomal structures are fundamental for understanding eukaryotic cells. Our earlier, nearly complete genome sequence of the hot-spring red alga <it>Cyanidioschyzon merolae </it>revealed several unique features, including just three ribosomal DNA copies, very few introns, and a small total number of genes. However, because the exact structures of certain functionally important repeated elements remained ambiguous, that sequence was not complete. Obviously, those ambiguities needed to be resolved before the unique features of the <it>C. merolae </it>genome could be summarized, and the ambiguities could only be resolved by completing the sequence. Therefore, we aimed to complete all previous gaps and sequence all remaining chromosomal ends, and now report the first nuclear-genome sequence for any eukaryote that is 100% complete.</p> <p>Results</p> <p>Our present complete sequence consists of 16546747 nucleotides covering 100% of the 20 linear chromosomes from telomere to telomere, representing the simple and unique chromosomal structures of the eukaryotic cell. We have unambiguously established that the <it>C. merolae </it>genome contains the smallest known histone-gene cluster, a unique telomeric repeat for all chromosomal ends, and an extremely low number of transposons.</p> <p>Conclusion</p> <p>By virtue of these attributes and others that we had discovered previously, <it>C. merolae </it>appears to have the simplest nuclear genome of the non-symbiotic eukaryotes. These unusually simple genomic features in the 100% complete genome sequence of <it>C. merolae </it>are extremely useful for further studies of eukaryotic cells.</p
    corecore