631 research outputs found
A TEM and FE-SEM Study of Two Stardust Cometary Particles Extracted From Tracks T111 and T112.
第2回極域科学シンポジウム/第34回南極隕石シンポジウム 11月17日(木) 国立国語研究所 2階講
Mineralogy of Stardust Track 112 Particle: Relation to Amoeboid Olivine Aggregates
The successful analysis of comet 81P/Wild 2 particles returned by the Stardust mission has revealed that the Wild 2 dust contains abundant silicate grains that are much larger than interstellar grains and appear to have formed in the inner regions of the solar nebula [1]. Wild 2 particles include minerals which are isotopically and mineralogically similar to CAIs [e.g., 2, 3] and chondrules [e.g., 4] in chondrites. In addition, particles similar to amoeboid olivine aggregates (AOAs) also have been discovered [5, 6,7]. C2067,2,112,1 is a terminal particle recovered from track #112 (T112). Nakamura-Messenger et al. [7] showed that the forsterite grain in T112 has O-16 enrichment of approximately 40 0/00 (vs. SMOW) and possibly formed together with AOAs. In this study, we have examined the mineralogy of the T112 particle and compared the possible relationships between T112 and AOAs in primitive meteorites
Petrology of Two Itokawa Particles: Comparison with Equilibrated LL Chondrites
A strong link between Itokawa particles and LL chondrites was confirmed by preliminary examinations of Hayabusa particles [e.g., 1, 2]. Both poorly equilibrated and highly equilibrated particles have been found among the grains returned from Itokawa [1], and it is suggested that they correspond to LL4 and LL5-6, respectively. Here we report the petrography of two Itokawa particles and TEM study of one, and compare them to Antarctic LL chondrites with variable petrologic types (LL4-LL7) in order to understand the metamorphic history of asteroid Itokawa
Synchrotron Radiation XRD Analysis of Indialite in Y-82094 Ungrouped Carbonaceous Chondrite
Y-82094 is an ungrouped type 3.2 carbonaceous chondrite, with abundant chondrules making 78 vol.% of the rock. Among these chondrules, an unusual porphyritic Al-rich magnesian chondrule is reported that consists of a cordierite-like phase, Al-rich orthopyroxene, cristobalite, and spinel surrounded by an anorthitic mesostasis. The reported chemical formula of the cordierite-like phase is Na(0.19)Mg(1.95)Fe(0.02)Al(3.66)Si(5.19)O18, which is close to stoichiometric cordierite (Mg2Al3[AlSi5O18]). Although cordierite can be present in Al-rich chondrules, it has a high temperature polymorph (indialite) and it is therefore necessary to determine whether it is cordierite or indialite in order to better constrain its formation conditions. In this abstract we report on our synchrotron radiation X-ray diffraction (SR-XRD) study of the cordierite-like phase in Y-82094
Pure nematic state in iron-based superconductor
Lattice and electronic states of thin FeSe films on LaAlO substrates are
investigated in the vicinity of the nematic phase transition. No evidence of
structural phase transition is found by x-ray diffraction below K, while results obtained from resistivity measurement and angle-resolved
photoemission spectroscopy clearly show the appearance of a nematic state.
These results indicate formation of a pure nematic state in the iron-based
superconductor and provide conclusive evidence that the nematic state
originates from the electronic degrees of freedom. This pure nematicity in the
thin film implies difference in the electron-lattice interaction from bulk FeSe
crystals. FeSe films provide valuable playgrounds for observing the pure
response of "bare" electron systems free from the electron-lattice interaction,
and should make important contribution to investigate nematicity and its
relationship with superconductivity
Mineralogy of Pyroxene and Olivine in the Almahata Sitta Ureilite
The Almahata Sitta meteorite (hereafter "Alma") is the first example of a recovered asteroidal sample that fell to earth after detection still in the orbit (2008TC3 asteroid), and thus is critical to understand the relationship between meteorites and their asteroidal parent bodies [1]. Alma is a polymict ureilite showing a fine-grained brecciated texture with variable lithologies from black, porous to denser, white stones [1]. It is an anomalous ureilite because of wide compositional ranges of silicates with abundant pores often coated by vapor-deposit crystals [1]. Nevertheless, Alma has general similarities to all ureilites because of reduction textures of silicates suggestive of rapid cooling from high temperature as well as heterogeneous oxygen isotope compositions [e.g., 1-5]. Alma is especially unique because it spans the compositional range of known ureilites [1]. In this abstract we report detailed mineralogical and crystallographic investigations of two different fragments to further constrain its thermal history with regards to the nature of the ureilite parent body
Searching for Chips of Kuiper Belt Objects in Meteorites
The Nice model [1&2] describes a scenario whereby the Jovian planets experienced a violent reshuffling event approx.3:9 Ga the giant planets moved, existing small body reservoirs were depleted or eliminated, and new reservoirs were created in particular locations. The Nice model quantitatively explains the orbits of the Jovian planets and Neptune [1], the orbits of bodies in several different small body reservoirs in the outer solar system (e.g., Trojans of Jupiter [2], the Kuiper belt and scattered disk [3], the irregular satellites of the giant planets [4], and the late heavy bombardment on the terrestrial planets approx.3:9 Ga [5]. This model is unique in plausibly explaining all of these phenomena. One issue with the Nice model is that it predicts that transported Kuiper Belt Objects (KBOs) (things looking like D class asteroids) should predominate in the outer asteroid belt, but we know only about 10% of the objects in the outer main asteroid belt appear to be D-class objects [6]. However based upon collisional modeling, Bottke et al. [6] argue that more than 90% of the objects captured in the outer main belt could have been eliminated by impacts if they had been weakly-indurated objects. These disrupted objects should have left behind pieces in the ancient regoliths of other, presumably stronger asteroids. Thus, a derived prediction of the Nice model is that ancient regolith samples (regolith-bearing meteorites) should contain fragments of collisionally-destroyed Kuiper belt objects. In fact KBO pieces might be expected to be present in most ancient regolith- bearing meteorites [7&8]
- …