22 research outputs found

    The CIP2A–TOPBP1 axis safeguards chromosome stability and is a synthetic lethal target for BRCA-mutated cancer

    Full text link
    BRCA1/2-mutated cancer cells adapt to the genome instability caused by their deficiency in homologous recombination (HR). Identification of these adaptive mechanisms may provide therapeutic strategies to target tumors caused by the loss of these genes. In the present study, we report genome-scale CRISPR-Cas9 synthetic lethality screens in isogenic pairs of BRCA1- and BRCA2-deficient cells and identify CIP2A as an essential gene in BRCA1- and BRCA2-mutated cells. CIP2A is cytoplasmic in interphase but, in mitosis, accumulates at DNA lesions as part of a complex with TOPBP1, a multifunctional genome stability factor. Unlike PARP inhibition, CIP2A deficiency does not cause accumulation of replication-associated DNA lesions that require HR for their repair. In BRCA-deficient cells, the CIP2A-TOPBP1 complex prevents lethal mis-segregation of acentric chromosomes that arises from impaired DNA synthesis. Finally, physical disruption of the CIP2A-TOPBP1 complex is highly deleterious in BRCA-deficient tumors, indicating that CIP2A represents an attractive synthetic lethal therapeutic target for BRCA1- and BRCA2-mutated cancers

    Complex Reorganization and Predominant Non-Homologous Repair Following Chromosomal Breakage in Karyotypically Balanced Germline Rearrangements and Transgenic Integration

    Get PDF
    We defined the genetic landscape of balanced chromosomal rearrangements at nucleotide resolution by sequencing 141 breakpoints from cytogenetically-interpreted translocations and inversions. We confirm that the recently described phenomenon of “chromothripsis” (massive chromosomal shattering and reorganization) is not unique to cancer cells but also occurs in the germline where it can resolve to a karyotypically balanced state with frequent inversions. We detected a high incidence of complex rearrangements (19.2%) and substantially less reliance on microhomology (31%) than previously observed in benign CNVs. We compared these results to experimentally-generated DNA breakage-repair by sequencing seven transgenic animals, and revealed extensive rearrangement of the transgene and host genome with similar complexity to human germline alterations. Inversion is the most common rearrangement, suggesting that a combined mechanism involving template switching and non-homologous repair mediates the formation of balanced complex rearrangements that are viable, stably replicated and transmitted unaltered to subsequent generations

    Transposon activation mutagenesis as a screening tool for identifying resistance to cancer therapeutics

    Get PDF
    Background: The development of resistance to chemotherapies represents a significant barrier to successful cancer treatment. Resistance mechanisms are complex, can involve diverse and often unexpected cellular processes, and can vary with both the underlying genetic lesion and the origin or type of tumor. For these reasons developing experimental strategies that could be used to understand, identify and predict mechanisms of resistance in different malignant cells would be a major advance. Methods: Here we describe a gain-of-function forward genetic approach for identifying mechanisms of resistance. This approach uses a modified piggyBac transposon to generate libraries of mutagenized cells, each containing transposon insertions that randomly activate nearby gene expression. Genes of interest are identified using next-gen high-throughput sequencing and barcode multiplexing is used to reduce experimental cost. Results: Using this approach we successfully identify genes involved in paclitaxel resistance in a variety of cancer cell lines, including the multidrug transporter ABCB1, a previously identified major paclitaxel resistance gene. Analysis of co-occurring transposons integration sites in single cell clone allows for the identification of genes that might act cooperatively to produce drug resistance a level of information not accessible using RNAi or ORF expression screening approaches. Conclusion: We have developed a powerful pipeline to systematically discover drug resistance in mammalian cells in vitro. This cost-effective approach can be readily applied to different cell lines, to identify canonical or context specific resistance mechanisms. Its ability to probe complex genetic context and non-coding genomic elements as well as cooperative resistance events makes it a good complement to RNAi or ORF expression based screens

    Adaptive Finite Element Analysis of the Anisotropic Biphasic Theory of Tissue-Equivalent Mechanics

    No full text
    The nonlinear partial differential equations of the anisotropic biphasic theory of tissueequivalent mechanics are solved with axial symmetry by an adaptive finite element system. The adaptive procedure operates within a method-of-lines framework using finite elements in space and backward difference software in time. Spatial meshes are automatically refined, coarsened, and relocated in response to error indications and material deformation. Problems with arbitrarily complex two-dimensional regions may be addressed. With meshes graded in high-error regions, the adaptive solutions have fewer degrees of freedom than solutions with comparable accuracy obtained on fixed quasi-uniform meshes. The adaptive software is used to address problems involving an isometric cell traction assay, where a cylindrical tissue equivalent is adhered at its end to fixed circular platens; a prototypical bioartificial artery; and a novel configuration that is intended as an initial step in a study to determine ..

    Histone H3R2 Symmetric Dimethylation and Histone H3K4 Trimethylation Are Tightly Correlated in Eukaryotic Genomes

    Get PDF
    The preferential in vitro interaction of the PHD finger of RAG2, a subunit of the V(D)J recombinase, with histone H3 tails simultaneously trimethylated at lysine 4 and symmetrically dimethylated at arginine 2 (H3R2me2sK4me3) predicted the existence of the previously unknown histone modification H3R2me2s. Here, we report the in vivo identification of H3R2me2s . Consistent with the binding specificity of the RAG2 PHD finger, high levels of H3R2me2sK4me3 are found at antigen receptor gene segments ready for rearrangement. However, this double modification is much more general; it is conserved throughout eukaryotic evolution. In mouse, H3R2me2s is tightly correlated with H3K4me3 at active promoters throughout the genome. Mutational analysis in S. cerevisiae reveals that deposition of H3R2me2s requires the same Set1 complex that deposits H3K4me3. Our work suggests that H3R2me2sK4me3, not simply H3K4me3 alone, is the mark of active promoters and that factors that recognize H3K4me3 will have their binding modulated by their preference for H3R2me2s
    corecore