14 research outputs found

    Importin-β and the small guanosine triphosphatase Ran mediate chromosome loading of the human chromokinesin Kid

    Get PDF
    Nucleocytoplasmic transport factors mediate various cellular processes, including nuclear transport, spindle assembly, and nuclear envelope/pore formation. In this paper, we identify the chromokinesin human kinesin-like DNA binding protein (hKid) as an import cargo of the importin-α/β transport pathway and determine its nuclear localization signals (NLSs). Upon the loss of its functional NLSs, hKid exhibited reduced interactions with the mitotic chromosomes of living cells. In digitonin-permeabilized mitotic cells, hKid was bound only to the spindle and not to the chromosomes themselves. Surprisingly, hKid bound to importin-α/β was efficiently targeted to mitotic chromosomes. The addition of Ran–guanosine diphosphate and an energy source, which generates Ran–guanosine triphosphate (GTP) locally at mitotic chromosomes, enhanced the importin-β–mediated chromosome loading of hKid. Our results indicate that the association of importin-β and -α with hKid triggers the initial targeting of hKid to mitotic chromosomes and that local Ran-GTP–mediated cargo release promotes the accumulation of hKid on chromosomes. Thus, this study demonstrates a novel nucleocytoplasmic transport factor–mediated mechanism for targeting proteins to mitotic chromosomes

    The Chromokinesin Kid Is Required for Maintenance of Proper Metaphase Spindle Size

    Full text link
    The human chromokinesin Kid/kinesin-10, a plus end-directed microtubule (MT)-based motor with both microtubule- and DNA-binding domains, is required for proper chromosome alignment at the metaphase plate. Here, we performed RNA interference experiments to deplete endogenous Kid from HeLa cells and confirmed defects in metaphase chromosome arm alignment in Kid-depleted cells. In addition, we noted a shortening of the spindle length, resulting in a pole-to-pole distance only 80% of wild type. The spindle microtubule-bundles with which Kid normally colocalize became less robust. Rescue of the two Kid deficiency phenotypes—imprecise chromosome alignment at metaphase and shortened spindles— exhibited distinct requirements. Mutants lacking either the DNA-binding domain or the MT motor ATPase failed to rescue the former defect, whereas rescue of the shortened spindle phenotype required neither activity. Kid also exhibits microtubule bundling activity in vitro, and rescue of the shortened spindle phenotype and the bundling activity displayed similar domain requirements, except that rescue required a coiled-coil domain not needed for bundling. These results suggest that distinct from its role in chromosome movement, Kid contributes to spindle morphogenesis by mediating spindle microtubules stabilization

    Molecular cloning and characterization of Byp, a murine receptor-type tyrosine phosphatase similar to human DEP-1.

    Full text link
    Novel murine cDNAs encoding a receptor-like protein tyrosine phosphatase, termed Byp (HPTP beta-like tyrosine phosphatase) were cloned. The putative Byp protein consists of 1238 amino acids, which possesses a single catalytic domain in the cytoplasmic region. The extracellular region comprises eight repeats of a fibronectin type III module and contains multiple N-glycosylation sites. The byp mRNA was 7.7-kb long and expressed in every tissue examined, its level being high in the brain and kidney. Transfection of the byp cDNA expression plasmid into COS7 cells resulted in the expression of a 220-kDa tyrosine phosphorylated protein. Furthermore, co-expression of Byp and the Src family kinase Fyn increased the level of tyrosine phosphorylation of Byp, suggesting that Byp was tyrosine-phosphorylated by Fyn. Finally, the byp gene was located to mouse chromosome 2E1-2 and rat chromosome 3q32-33

    Cdc2-mediated phosphorylation of Kid controls its distribution to spindle and chromosomes

    Full text link
    The chromokinesin Kid is important in chromosome alignment at the metaphase plate. Here, we report that Kid function is regulated by phosphorylation. We identify Ser427 and Thr463 as M phase-specific phosphorylation sites and Cdc2–cyclin B as a Thr463 kinase. Kid with a Thr463 to alanine mutation fails to be localized on chromosomes and is only detected along spindles, although it retains the ability to bind DNA or chromosomes. Localization of rigor-type mutant Kid, which shows nucleotide-independent microtubule association, is also confined to the spindle, implying that strong association of Kid with the spindle can sequester it from chromosomes. T463A substitution in DNA-binding domain-truncated Kid consistently enhances its spindle localization. At physiological ionic strength, unphosphorylated Kid shows ATP-independent microtubule association, whereas Thr463-phosphorylated Kid shows ATP dependency. Moreover, the stalk region of unphosphorylated Kid interacts with microtubules and the interaction is weakened when Thr463 is phosphorylated. Our data suggest that phosphorylation on Thr463 of Kid downregulates its affinity for microtubules to ensure reversible association with spindles, allowing Kid to bind chromosomes and exhibit its function

    Kid-Mediated Chromosome Compaction Ensures Proper Nuclear Envelope Formation

    Get PDF
    SummaryToward the end of mitosis, neighboring chromosomes gather closely to form a compact cluster. This is important for reassembling the nuclear envelope around the entire chromosome mass but not individual chromosomes. By analyzing mice and cultured cells lacking the expression of chromokinesin Kid/kinesin-10, we show that Kid localizes to the boundaries of anaphase and telophase chromosomes and contributes to the shortening of the anaphase chromosome mass along the spindle axis. Loss of Kid-mediated anaphase chromosome compaction often causes the formation of multinucleated cells, specifically at oocyte meiosis II and the first couple of mitoses leading to embryonic death. In contrast, neither male meiosis nor somatic mitosis after the morula-stage is affected by Kid deficiency. These data suggest that Kid-mediated anaphase/telophase chromosome compaction prevents formation of multinucleated cells. This protection is especially important during the very early stages of development, when the embryonic cells are rich in ooplasm
    corecore