555 research outputs found
Comparison of formaldehyde and methanol fixatives used in the detection of ion channel proteins in isolated rat ventricular myocytes by immunofluorescence labelling and confocal microscopy
In this study, a fixation protocol using a 10% neutral buffered formalin (FA) solution and another protocol using a methanol (MeOH) solution were compared for detection of ion channels, Kv1.5, Kv4.2, Cav1.2, Kir6.2, Nav1.5 and Nav1.1 in rat myocytes by immunolabelling. Kv1.5 and Kv4.2 at intercalated discs and Cav1.2 at transverse tubules were not detected by FA but were detected by MeOH. Kir6.2 at transverse tubules and Nav1.5 at sarcolemma were detected by FA but not by MeOH. It is suggested that both FA and MeOH fixation protocols should be used for the detection of cardiac ion channels by immunolabellin
Non-resonant direct p- and d-wave neutron capture by 12C
Discrete gamma-rays from the neutron capture state of 13C to its low-lying
bound states have been measured using pulsed neutrons at En = 550 keV. The
partial capture cross sections have been determined to be 1.7+/-0.5,
24.2+/-1.0, 2.0+/-0.4 and 1.0+/-0.4 microb for the ground (1/2-), first (1/2+),
second (3/2-) and third (5/2+) excited states, respectively. From a comparison
with theoretical predictions based on the non-resonant direct radiative capture
mechanism, we could determine the spectroscopic factor for the 1/2+ state to be
0.80 +/- 0.04, free from neutron-nucleus interaction ambiguities in the
continuum. In addition we have detected the contribution of the non-resonant
d-wave capture component in the partial cross sections for transitions leading
to the 1/2- and 3/2- states. While the s-wave capture dominates at En < 100
keV, the d-wave component turns out to be very important at higher energies.
From the present investigation the 12C(n,gamma)13C reaction rate is obtained
for temperatures in the range 10E+7 - 10E+10 K.Comment: Accepted for publication in Phys. Rev. C. - 16 pages + 8 figure
Intermittent exposure to traces of green leaf volatiles triggers a plant response
Plants are known to mount a defensive response when exposed to volatile chemicals from other plants, but the critical concentration required for this response is not known. We showed that intermittent exposure over a period of 3 weeks to trace amounts (less than 140 pptV) of green leaf volatiles emitted by a freshly damaged Arabidopsis plant induced physiological (defensive) responses in undamaged neighbouring plants. These results demonstrated that plants can respond to long-term repeated exposures to subcritical amounts of chemical signals
Structural modification of TiO2 nanorod films with an influence on the photovoltaic efficiency of a dye-sensitized solar cell (DSSC)
TiO2 nanorod films have been deposited on ITO substrates by dc reactive magnetron sputtering technique. The structures of these nanorod films were modified by the variation of the oxygen pressure during the sputtering process. Although all these TiO2 nanorod films deposited at different oxygen pressures show an anatase structure, the orientation of the nanorod films varies with the oxygen pressure. Only a very weak (101) diffraction peak can be observed for the TiO2 nanorod film prepared at low oxygen pressure. However, as the oxygen pressure is increased, the (220) diffraction peak appears and the intensity of this diffraction peak is increased with the oxygen pressure. The results of the SEM show that these TiO2 nanorods are perpendicular to the ITO substrate. At low oxygen pressure, these sputtered TiO2 nanorods stick together and have a dense structure. As the oxygen pressure is increased, these sputtered TiO2 nanorods get separated gradually and have a porous structure. The optical transmittance of these TiO2 nanorod films has been measured and then fitted by OJL model. The porosities of the TiO2 nanorod films have been calculated. The TiO2 nanorod film prepared at high oxygen pressure shows a high porosity. The dye-sensitized solar cells (DSSCs) have been assembled using these TiO2 nanorod films prepared at different oxygen pressures as photoelectrode. The optimum performance was achieved for the DSSC using the TiO2 nanorod film with the highest (220) diffraction peak and the highest porosity
- …