8,273 research outputs found
Carrier States and Ferromagnetism in Diluted Magnetic Semiconductors
Applying the dynamical coherent potential approximation to a simple model, we
have systematically studied the carrier states in Mn-type diluted
magnetic semiconductors (DMS's). The model calculation was performed for three
typical cases of DMS's: The cases with strong and moderate exchange
interactions in the absence of nonmagnetic potentials, and the case with strong
attractive nonmagnetic potentials in addition to moderate exchange interaction.
When the exchange interaction is sufficiently strong, magnetic impurity bands
split from the host band. Carriers in the magnetic impurity band mainly stay at
magnetic sites, and coupling between the carrier spin and the localized spin is
very strong. The hopping of the carriers among the magnetic sites causes
ferromagnetism through a {\it double-exchange (DE)-like} mechanism. We have
investigated the condition for the DE-like mechanism to operate in DMS's. The
result reveals that the nonmagnetic attractive potential at the magnetic site
assists the formation of the magnetic impurity band and makes the DE-like
mechanism operative by substantially enhancing the effect of the exchange
interaction. Using conventional parameters we have studied the carrier states
in GaMnAs. The result shows that the ferromagnetism is caused
through the DE-like mechanism by the carriers in the bandtail originating from
the impurity states.Comment: 20 pages, 14 figure
Patchy He II reionization and the physical state of the IGM
We present a Monte-Carlo model of He II reionization by QSOs and its effect
on the thermal state of the clumpy intergalactic medium (IGM). The model
assumes that patchy reionization develops as a result of the discrete
distribution of QSOs. It includes various recipes for the propagation of the
ionizing photons, and treats photo-heating self-consistently. The model
provides the fraction of He III, the mean temperature in the IGM, and the He II
mean optical depth -- all as a function of redshift. It also predicts the
evolution of the local temperature versus density relation during reionization.
Our findings are as follows: The fraction of He III increases gradually until
it becomes close to unity at . The He II mean optical depth
decreases from at to at .
The mean temperature rises gradually between and and
declines slowly at lower redshifts. The model predicts a flattening of the
temperature-density relation with significant increase in the scatter during
reionization at . Towards the end of reionization the scatter is
reduced and a tight relation is re-established. This scatter should be
incorporated in the analysis of the Ly forest at . Comparison
with observational results of the optical depth and the mean temperature at
moderate redshifts constrains several key physical parameters.Comment: 18 pages, 9 figures; Changed content. Accepted for publication in
MNRA
The Influence of Magnetic Domain Walls on Longitudinal and Transverse Magnetoresistance in Tensile Strained (Ga,Mn)As Epilayers
We present a theoretical analysis of recent experimental measurements of
magnetoresistance in (Ga,Mn)As epilayers with perpendicular magnetic
anisotropy. The model reproduces the field-antisymmetric anomalies observed in
the longitudinal magnetoresistance in the planar geometry (magnetic field in
the epilayer plane and parallel to the current density), as well as the unusual
shape of the accompanying transverse magnetoresistance. The magnetoresistance
characteristics are attributed to circulating currents created by the presence
of magnetic domain walls
Mott Relation for Anomalous Hall and Nernst effects in Ga1-xMnxAs Ferromagnetic Semiconductors
The Mott relation between the electrical and thermoelectric transport
coefficients normally holds for phenomena involving scattering. However, the
anomalous Hall effect (AHE) in ferromagnets may arise from intrinsic spin-orbit
interaction. In this work, we have simultaneously measured AHE and the
anomalous Nernst effect (ANE) in Ga1-xMnxAs ferromagnetic semiconductor films,
and observed an exceptionally large ANE at zero magnetic field. We further show
that AHE and ANE share a common origin and demonstrate the validity of the Mott
relation for the anomalous transport phenomena
Integral Transforms for Conformal Field Theories with a Boundary
A new method is developed for solving the conformally invariant integrals
that arise in conformal field theories with a boundary. The presence of a
boundary makes previous techniques for theories without a boundary less
suitable. The method makes essential use of an invertible integral transform,
related to the radon transform, involving integration over planes parallel to
the boundary. For successful application of this method several nontrivial
hypergeometric function relations are also derived.Comment: 20 pagess, LateX fil
The effect of the Abrikosov vortex phase on spin and charge states in magnetic semiconductor-superconductor hybrids
We explore the possibility of using the inhomogeneous magnetic field carried
by an Abrikosov vortex in a type-II superconductor to localize spin-polarized
textures in a nearby magnetic semiconductor quantum well. We show how
Zeeman-induced localization induced by a single vortex is indeed possible, and
use these results to investigate the effect of a periodic vortex array on the
transport properties of the magnetic semiconductor. In particular, we find an
unconventional Integer Quantum Hall regime, and predict directly testable
experimental consequences due to the presence of the periodic spin polarized
structure induced by the superconducting vortex lattice in the magnetic
semiconductor.Comment: 12 pages, 15 figure
- …