605 research outputs found

    Quarkyonic matter in lattice QCD at strong coupling

    Full text link
    We study the phase diagram of quark matter at finite temperature and density in the strong coupling lattice QCD with one species of unrooted staggered fermions including finite coupling (1/g21/g^2) effects for color SU(NcN_c). We find that we may have partially chiral restored medium density matter at Nc=3N_c=3, which would correspond to the quarkyonic matter suggested at large NcN_c.Comment: 9 pages, 4 figure

    Effective Potential in the Strong-coupling Lattice QCD with Next-to-Next-to-Leading Order Effects

    Full text link
    We derive an analytic expression of the effective potential at finite temperature (T) and chemical potential (mu) in the strong-coupling lattice QCD for color SU(3) including next-to-next-to-leading order (NNLO) effects in the strong coupling expansion. NNLO effective action terms are systematically evaluated in the leading order of the large dimensional (1/d) expansion, and are found to come from some types of connected two plaquette configurations. We apply the extended Hubbard-Stratonovich transformation and a gluonic dressed fermion technique to the effective action, and obtain the effective potential as a function of T, mu, and two order parameters; chiral condensate and a vector potential field. The next-to-leading order (NLO) and NNLO effects result in modifications of the wave function renormalization factor, quark mass and chemical potential. We find that T_{c,mu=0} and mu_{c,T=0} are similar to the NLO results, whereas the position of the critical point is sensitive to NNLO corrections.Comment: 27 pages, 10 figures. v2; More dicussions added, figures improved, and typos correcte

    Chiral and deconfinement transitions in strong coupling lattice QCD with finite coupling and Polyakov loop effects

    Get PDF
    We investigate chiral and deconfinement transitions in the framework of the strong coupling lattice QCD for color SU(3) with one species of unrooted staggered fermion at finite temperature and quark chemical potential. We take account of the leading order Polyakov loop terms as well as the next-to-next-to-leading order (1/g^4) fermionic terms of the strong coupling expansion in the effective action. We investigate the Polyakov loop effects by comparing two approximation schemes, a Haar measure method (no fluctuation from the mean field) and a Weiss mean-field method (with fluctuations). The effective potential is obtained in both cases, and we analytically clarify the Polyakov loop contributions to the effective potential. The Polyakov loop is found to suppress the chiral condensate and to reduce the chiral transition temperature at mu=0, and the chiral transition temperature roughly reproduces the Monte Carlo results at beta=2N_c/g^2 \lesssim 4. The deconfinement transition is found to be the crossover and first order for light (am_0 \lesssim 4 at beta=4) and heavy quark masses, respectively.Comment: 13 pages, 15 figures. v2; More dicussions added, figures improved, and typos correcte

    Another mean field treatment in the strong coupling limit of lattice QCD

    Get PDF
    We discuss the QCD phase diagram in the strong coupling limit of lattice QCD by using a new type of mean field coming from the next-to-leading order of the large dimensional expansion. The QCD phase diagram in the strong coupling limit recently obtained by using the monomer-dimer-polymer (MDP) algorithm has some differences in the phase boundary shape from that in the mean field results. As one of the origin to explain the difference, we consider another type of auxiliary field, which corresponds to the point-splitting mesonic composite. Fermion determinant with this mean field under the anti-periodic boundary condition gives rise to a term which interpolates the effective potentials in the previously proposed zero and finite temperature mean field treatments. While the shift of the transition temperature at zero chemical potential is in the desirable direction and the phase boundary shape is improved, we find that the effects are too large to be compatible with the MDP simulation results.Comment: Talk given at 28th International Symposium on Lattice Field Theory (Lattice 2010), Villasimius, Sardinia, Italy, 14-19 June, 201

    A note on the von Bertalanffy growth function concerning the allocation of surplus energy to reproduction

    Get PDF
    We propose an extended form of the von Bertalanffy growth function (VBGF), where the allocation of surplus energy to reproduction is considered. Any function can be used in our model to describe the ratio of energy allocation for reproduction to that for somatic growth. As an example, two models for energy allocation were derived: a step-function and a logistic function. The extended model can jointly describe growth in adult and juvenile stages. The change in growth rate between the two stages can be either gradual or steep; the latter gives a biphasic VBGF. The results of curve fitting indicated that a consideration of reproductive energy is meaningful for model extension. By controlling parameter values, our comprehensive model gives various growth curve shapes ranging from indeterminate to determinate growth. An increase in the number of parameters is unavoidable in practical applications of this new model. Additional information on reproduction will improve the reliability of model estimates
    corecore