552 research outputs found

    WHIZARD 2.2 for Linear Colliders

    Full text link
    We review the current status of the WHIZARD event generator. We discuss, in particular, recent improvements and features that are relevant for simulating the physics program at a future Linear Collider.Comment: Talk presented at the International Workshop on Future Linear Colliders (LCWS13), Tokyo, Japan, 11-15 November 201

    Modern Particle Physics Event Generation with WHIZARD

    Full text link
    We describe the multi-purpose Monte-Carlo event generator WHIZARD for the simulation of high-energy particle physics experiments. Besides the presentation of the general features of the program like SM physics, BSM physics, and QCD effects, special emphasis will be given to the support of the most accurate simulation of the collider environments at hadron colliders and especially at future linear lepton colliders. On the more technical side, the very recent code refactoring towards a completely object-oriented software package to improve maintainability, flexibility and code development will be discussed. Finally, we present ongoing work and future plans regarding higher-order corrections, more general model support including the setup to search for new physics in vector boson scattering at the LHC, as well as several lines of performance improvements.Comment: 7 pages; contribution to the proceedings of the conference "ACAT 2014 (Advanced Computing and Analysis Techniques in physics)", Prague, Czech Republic, September 201

    Cavitation as a Microfluidic Tool

    Get PDF
    Cavitation in confined geometries in particular in narrow gaps prevalent in microfluidic geometries allows for novel applications. Here we will give an overview of successful demonstrations of cavitation as a microfluidic tool. Cavitation can pump and mix liquids very rapidly, move objects such as cells, rupture plasma membranes, probe elastic properties in micro-rheology, study coalescence, and even create arbitrary superpositions of shock waves. In all areas, bubbles are created with a focused laser which allows precise temporal and spatial control. With the usage of digital holography arbitrary configurations of bubbles can be created such as bubble clusters, squarish, toroidal, or even linear cavitation bubbles. Interestingly, even in very narrow gaps of a few tens of microns most of the bubble dynamics can be described with potential flow. This presentation will summarize published work and show current research under progress.http://deepblue.lib.umich.edu/bitstream/2027.42/84286/1/CAV2009-final103.pd

    Event Generators for Bhabha Scattering

    Get PDF
    The results obtained by the "Event Generators for Bhabha Scattering" working group during the CERN Workshop "Physics at LEP2" (1994/1995) are presented.Comment: 70 pages, PostScript file. To appear in the Report of the Workshop on Physics at LEP2, G. Altarelli T. Sjostrand and F. Zwirner ed

    Photospheric Abundances of the Hot Stars in NGC1399 and Limits on the Fornax Cluster Cooling Flow

    Get PDF
    We present far-UV spectroscopy of the giant elliptical galaxy NGC 1399, obtained with the Far Ultraviolet Spectroscopic Explorer. Of all quiescent ellipticals, NGC 1399 has the strongest known ``UV upturn'' -- a sharp spectral rise shortward of 2500 A. It is now well-established that this emission comes from hot horizontal branch (HB) stars and their progeny; however, the chemical composition of these stars has been the subject of a long-standing debate. For the first time in observations of any elliptical galaxy, our spectra clearly show photospheric metallic absorption lines within the UV upturn. The abundance of N is at 45% solar, Si is at 13% solar, and C is at 2% solar. Such abundance anomalies are a natural consequence of gravitational diffusion. These photospheric abundances fall in the range observed for subdwarf B stars of the Galactic field. Although NGC1399 is at the center of the Fornax cluster, we find no evidence for O VI cooling flow emission. The upper limit to 1032,1038 emission is 3.9E-15 erg/s/cm2, equivalent to 0.14 M_sun/yr, and less than that predicted by simple cooling flow models of the NGC 1399 X-ray luminosity.Comment: 4 pages, Latex. 2 figures. Uses corrected version of emulateapj.sty and apjfonts.sty (included). Accepted for publication in ApJ Letters. Revised figure placemen

    Far-Ultraviolet Color Gradients in Early-Type Galaxies

    Get PDF
    We discuss far-UV (1500 A) surface photometry and FUV-B color profiles for 8 E/S0 galaxies from images taken with the Ultraviolet Imaging Telescope, primarily during the Astro-2 mission. In three cases, the FUV radial profiles are more consistent with an exponential than a de Vaucouleurs function, but there is no other evidence for the presence of a disk or of young, massive stars. In all cases except M32 the FUV-B color becomes redder at larger radii. There is a wide range of internal radial FUV-B color gradients. However, we find no correlation between the FUV-B color gradients and internal metallicity gradients based on Mg absorption features. We conclude that metallicity is not the sole parameter controlling the "UV upturn component" in old populations.Comment: 11 pages; tar.gz file includes LaTeX text file, 3 PostScript figures. Paper to be published in ApJ Letter

    Pseudo-axions in Little Higgs models

    Full text link
    Little Higgs models have an enlarged global symmetry which makes the Higgs boson a pseudo-Goldstone boson. This symmetry typically contains spontaneously broken U(1) subgroups which provide light electroweak-singlet pseudoscalars. Unless such particles are absorbed as the longitudinal component of ZZ' states, they appear as pseudoscalars in the physical spectrum at the electroweak scale. We outline their significant impact on Little Higgs phenomenology and analyze a few possible signatures at the LHC and other future colliders in detail. In particular, their presence significantly affects the physics of the new heavy quark states predicted in Little Higgs models, and inclusive production at LHC may yield impressive diphoton resonances.Comment: 28 pages, 9 figs., accepted to PRD; footnote added, typos correcte

    WW Cross-sections and Distributions

    Get PDF
    We present the results obtained by the "WW Cross-sections and Distributions" working group during the CERN Workshop "Physics at LEP2" (1994/1995)Comment: 61 pages, tar'ed gzip'ed uuencoded files, LaTeX, 4 Postscript figures. To appear in "Physics at LEP2", G.Altarelli and F.Zwirner eds., CERN Report 199
    corecore