879 research outputs found
Transient Analysis of Warm Electron Injection Programming of Double Gate SONOS Memories by means of Full Band Monte Carlo Simulation
In this paper we investigate "Warm Electron Injection" as a mechanism for NOR
programming of double-gate SONOS memories through 2D full band Monte Carlo
simulations. Warm electron injection is characterized by an applied VDS smaller
than 3.15 V, so that electrons cannot easily accumulate a kinetic energy larger
than the height of the Si/SiO2 barrier. We perform a time-dependent simulation
of the program operation where the local gate current density is computed with
a continuum-based method and is adiabatically separated from the 2D full Monte
Carlo simulation used for obtaining the electron distribution in the phase
space. In this way we are able to compute the time evolution of the charge
stored in the nitride and of the threshold voltages corresponding to forward
and reverse bias. We show that warm electron injection is a viable option for
NOR programming in order to reduce power supply, preserve reliability and CMOS
logic level compatibility. In addition, it provides a well localized charge,
offering interesting perspectives for multi-level and dual bit operation, even
in devices with negligible short channel effects
Tissue-Tissue Interaction-Triggered Calcium Elevation Is Required for Cell Polarization during Xenopus Gastrulation
The establishment of cell polarity is crucial for embryonic cells to acquire their proper morphologies and functions, because cell alignment and intracellular events are coordinated in tissues during embryogenesis according to the cell polarity. Although much is known about the molecules involved in cell polarization, the direct trigger of the process remains largely obscure. We previously demonstrated that the tissue boundary between the chordamesoderm and lateral mesoderm of Xenopus laevis is important for chordamesodermal cell polarity. Here, we examined the intracellular calcium dynamics during boundary formation between two different tissues. In a combination culture of nodal-induced chordamesodermal explants and a heterogeneous tissue, such as ectoderm or lateral mesoderm, the chordamesodermal cells near the boundary frequently displayed intracellular calcium elevation; this frequency was significantly less when homogeneous explants were used. Inhibition of the intracellular calcium elevation blocked cell polarization in the chordamesodermal explants. We also observed frequent calcium waves near the boundary of the dorsal marginal zone (DMZ) dissected from an early gastrula-stage embryo. Optical sectioning revealed that where heterogeneous explants touched, the chordamesodermal surface formed a wedge with the narrow end tucked under the heterogeneous explant. No such configuration was seen between homogeneous explants. When physical force was exerted against a chordamesodermal explant with a glass needle at an angle similar to that created in the explant, or migrating chordamesodermal cells crawled beneath a silicone block, intracellular calcium elevation was frequent and cell polarization was induced. Finally, we demonstrated that a purinergic receptor, which is implicated in mechano-sensing, is required for such frequent calcium elevation in chordamesoderm and for cell polarization. This study raises the possibility that tissue-tissue interaction generates mechanical forces through cell-cell contact that initiates coordinated cell polarization through a transient increase in intracellular calcium
Drosophila CLIP-190 and mammalian CLIP-170 display reduced microtubule plus end association in the nervous system
Axons act like cables, electrically wiring the nervous system. Polar bundles of microtubules (MTs) form their backbones and drive their growth. Plus end–tracking proteins (+TIPs) regulate MT growth dynamics and directionality at their plus ends. However, current knowledge about +TIP functions, mostly derived from work in vitro and in nonneuronal cells, may not necessarily apply to the very different context of axonal MTs. For example, the CLIP family of +TIPs are known MT polymerization promoters in nonneuronal cells. However, we show here that neither Drosophila CLIP-190 nor mammalian CLIP-170 is a prominent MT plus end tracker in neurons, which we propose is due to low plus end affinity of the CAP-Gly domain–containing N-terminus and intramolecular inhibition through the C-terminus. Instead, both CLIP-190 and CLIP-170 form F-actin–dependent patches in growth cones, mediated by binding of the coiled-coil domain to myosin-VI. Because our loss-of-function analyses in vivo and in culture failed to reveal axonal roles for CLIP-190, even in double-mutant combinations with four other +TIPs, we propose that CLIP-190 and -170 are not essential axon extension regulators. Our findings demonstrate that +TIP functions known from nonneuronal cells do not necessarily apply to the regulation of the very distinct MT networks in axons
A PAR-1–dependent orientation gradient of dynamic microtubules directs posterior cargo transport in the Drosophila oocyte
A PAR-1–mediated bias in microtubule organization in the
Drosophila oocyte underlies posterior-directed mRNA
transport
The high-lying Li levels at excitation energy around 21 MeV
The H+He cluster structure in Li was investigated by the
H(,H He)n kinematically complete experiment at the incident
energy = 67.2 MeV. We have observed two resonances at =
21.30 and 21.90 MeV which are consistent with the He(H, )Li
analysis in the Ajzenberg-Selove compilation. Our data are compared with the
previous experimental data and the RGM and CSRGM calculations.Comment: 12 pages, 6 figures. Accepted for publication in J. Phys. Soc. Jp
Criterion for traffic phases in single vehicle data and empirical test of a microscopic three-phase traffic theory
A microscopic criterion for distinguishing synchronized flow and wide moving
jam phases in single vehicle data measured at a single freeway location is
presented. Empirical local congested traffic states in single vehicle data
measured on different days are classified into synchronized flow states and
states consisting of synchronized flow and wide moving jam(s). Then empirical
microscopic characteristics for these different local congested traffic states
are studied. Using these characteristics and empirical spatiotemporal
macroscopic traffic phenomena, an empirical test of a microscopic three-phase
traffic flow theory is performed. Simulations show that the microscopic
criterion and macroscopic spatiotemporal objective criteria lead to the same
identification of the synchronized flow and wide moving jam phases in congested
traffic. It is found that microscopic three-phase traffic models can explain
both microscopic and macroscopic empirical congested pattern features. It is
obtained that microscopic distributions for vehicle speed difference as well as
fundamental diagrams and speed correlation functions can depend on the spatial
co-ordinate considerably. It turns out that microscopic optimal velocity (OV)
functions and time headway distributions are not necessarily qualitatively
different, even if local congested traffic states are qualitatively different.
The reason for this is that important spatiotemporal features of congested
traffic patterns are it lost in these as well as in many other macroscopic and
microscopic traffic characteristics, which are widely used as the empirical
basis for a test of traffic flow models, specifically, cellular automata
traffic flow models.Comment: 27 pages, 16 figure
The Fundamental Diagram of Pedestrian Movement Revisited
The empirical relation between density and velocity of pedestrian movement is
not completely analyzed, particularly with regard to the `microscopic' causes
which determine the relation at medium and high densities. The simplest system
for the investigation of this dependency is the normal movement of pedestrians
along a line (single-file movement). This article presents experimental results
for this system under laboratory conditions and discusses the following
observations: The data show a linear relation between the velocity and the
inverse of the density, which can be regarded as the required length of one
pedestrian to move. Furthermore we compare the results for the single-file
movement with literature data for the movement in a plane. This comparison
shows an unexpected conformance between the fundamental diagrams, indicating
that lateral interference has negligible influence on the velocity-density
relation at the density domain . In addition we test a
procedure for automatic recording of pedestrian flow characteristics. We
present preliminary results on measurement range and accuracy of this method.Comment: 13 pages, 9 figure
- …