667 research outputs found
Extension and its characteristics of ECRH plasma in the LHD
One of the main objectives of the LHD is to extend the plasma confinement
database for helical systems and to demonstrate such extended plasma
confinement properties to be sustained in steady state. Among the various
plasma parameter regimes, the study of confinement properties in the
collisionless regime is of particular importance. Electron cyclotron resonance
heating (ECRH) has been extensively used for these confinement studies of the
LHD plasma from the initial operation. The system optimizations including the
modification of the transmission and antenna system are performed with the
special emphasis on the local heating properties. As the result, central
electron temperature of more than 10 keV with the electron density of 0.6 x
10 m is achieved near the magnetic axis. The electron temperature
profile is characterized by a steep gradient similar to those of an internal
transport barrier observed in tokamaks and stellarators. 168 GHz ECRH system
demonstrated efficient heating at over the density more than 1.0 x 10
m. CW ECRH system is successfully operated to sustain 756 s discharge.Comment: 12th International Congress on Plasma Physics, 25-29 October 2004,
Nice (France
Nuclear Alpha-Particle Condensates
The -particle condensate in nuclei is a novel state described by a
product state of 's, all with their c.o.m. in the lowest 0S orbit. We
demonstrate that a typical -particle condensate is the Hoyle state
( MeV, state in C), which plays a crucial role for
the synthesis of C in the universe. The influence of antisymmentrization
in the Hoyle state on the bosonic character of the particle is
discussed in detail. It is shown to be weak. The bosonic aspects in the Hoyle
state, therefore, are predominant. It is conjectured that -particle
condensate states also exist in heavier nuclei, like O,
Ne, etc. For instance the state of O at MeV
is identified from a theoretical analysis as being a strong candidate of a
condensate. The calculated small width (34 keV) of ,
consistent with data, lends credit to the existence of heavier Hoyle-analogue
states. In non-self-conjugated nuclei such as B and C, we discuss
candidates for the product states of clusters, composed of 's,
triton's, and neutrons etc. The relationship of -particle condensation
in finite nuclei to quartetting in symmetric nuclear matter is investigated
with the help of an in-medium modified four-nucleon equation. A nonlinear order
parameter equation for quartet condensation is derived and solved for
particle condensation in infinite nuclear matter. The strong qualitative
difference with the pairing case is pointed out.Comment: 71 pages, 41 figures, review article, to be published in "Cluster in
Nuclei (Lecture Notes in Physics) - Vol.2 -", ed. by C. Beck,
(Springer-Verlag, Berlin, 2011
- …