2,370 research outputs found
A field theoretic approach to master equations and a variational method beyond the Poisson ansatz
We develop a variational scheme in a field theoretic approach to a stochastic
process. While various stochastic processes can be expressed using master
equations, in general it is difficult to solve the master equations exactly,
and it is also hard to solve the master equations numerically because of the
curse of dimensionality. The field theoretic approach has been used in order to
study such complicated master equations, and the variational scheme achieves
tremendous reduction in the dimensionality of master equations. For the
variational method, only the Poisson ansatz has been used, in which one
restricts the variational function to a Poisson distribution. Hence, one has
dealt with only restricted fluctuation effects. We develop the variational
method further, which enables us to treat an arbitrary variational function. It
is shown that the variational scheme developed gives a quantitatively good
approximation for master equations which describe a stochastic gene regulatory
network.Comment: 13 pages, 2 figure
The stochastic pump current and the non-adiabatic geometrical phase
We calculate a pump current in a classical two-state stochastic chemical
kinetics by means of the non-adiabatic geometrical phase interpretation. The
two-state system is attached to two particle reservoirs, and under a periodic
perturbation of the kinetic rates, it gives rise to a pump current between the
two-state system and the absorbing states. In order to calculate the pump
current, the Floquet theory for the non-adiabatic geometrical phase is extended
from a Hermitian case to a non-Hermitian case. The dependence of the pump
current on the frequency of the perturbative kinetic rates is explicitly
derived, and a stochastic resonance-like behavior is obtained.Comment: 11 page
Current and fluctuation in a two-state stochastic system under non-adiabatic periodic perturbation
We calculate a current and its fluctuation in a two-state stochastic system
under a periodic perturbation. The system could be interpreted as a channel on
a cell surface or a single Michaelis-Menten catalyzing enzyme. It has been
shown that the periodic perturbation induces so-called pump current, and the
pump current and its fluctuation are calculated with the aid of the geometrical
phase interpretation. We give a simple calculation recipe for the statistics of
the current, especially in a non-adiabatic case. The calculation scheme is
based on the non-adiabatic geometrical phase interpretation. Using the Floquet
theory, the total current and its fluctuation are calculated, and it is
revealed that the average of the current shows a stochastic-resonance-like
behavior. In contrast, the fluctuation of the current does not show such
behavior.Comment: 7 pages, 1 figur
In-situ photoemission study of Pr_{1-x}Ca_xMnO_3 epitaxial thin films with suppressed charge fluctuations
We have performed an {\it in-situ} photoemission study of Pr_{1-x}Ca_xMnO_3
(PCMO) thin films grown on LaAlO_3 (001) substrates and observed the effect of
epitaxial strain on the electronic structure. We found that the chemical
potential shifted monotonically with doping, unlike bulk PCMO, implying the
disappearance of incommensurate charge fluctuations of bulk PCMO. In the
valence-band spectra, we found a doping-induced energy shift toward the Fermi
level (E_F) but there was no spectral weight transfer, which was observed in
bulk PCMO. The gap at E_F was clearly seen in the experimental band dispersions
determined by angle-resolved photoemission spectroscopy and could not be
explained by the metallic band structure of the C-type antiferromagnetic state,
probably due to localization of electrons along the ferromagnetic chain
direction or due to another type of spin-orbital ordering.Comment: 5 pages, 4 figure
Infrared anomalous Hall effect in SrRuO: Evidence for crossover to intrinsic behavior
The origin of the Hall effect in many itinerant ferromagnets is still not
resolved, with an anomalous contribution from the sample magnetization that can
exhibit extrinsic or intrinsic behavior. We report the first mid-infared (MIR)
measurements of the complex Hall (), Faraday (), and Kerr
() angles, as well as the Hall conductivity () in a
SrRuO film in the 115-1400 meV energy range. The magnetic field,
temperature, and frequency dependence of the Hall effect is explored. The MIR
magneto-optical response shows very strong frequency dependence, including sign
changes. Below 200 meV, the MIR changes sign between 120 and 150
K, as is observed in dc Hall measurements. Above 200 meV, the temperature
dependence of is similar to that of the dc magnetization and the
measurements are in good agreement with predictions from a band calculation for
the intrinsic anomalous Hall effect (AHE). The temperature and frequency
dependence of the measured Hall effect suggests that whereas the behavior above
200 meV is consistent with an intrinsic AHE, the extrinsic AHE plays an
important role in the lower energy response.Comment: The resolution of figures is improve
Observations of snowpack properties to evaluate ground-based microwave remote sensing
Active microwave radar has been shown to have great potential for estimating snow water equivalent (SWE) globally from space. To help evaluate optimal active microwave sensor configurations to observe SWE, we evaluated ground-based Frequency Modulated Continuous Wave (FMCW) radar (12–18 GHz, cross-polarisation) using very high resolution in-situ observations of snowpack layering, dielectric permittivity and density over a 10 m snow trench on Toolik Lake, Alaska.
Results showed that the thicknesses of layers within the 10 m trench were highly variable over short distances (< 1 m), even where total snow depth changed very little. Layer boundaries observed using NIR photography identified all bands of high radar backscatter. Although additional observations of density and dielectric permittivity helped to explain the causes of backscatter, not all snowpack properties which cause backscatter were coincident with strong vertical changes in density or permittivity. Further observations of high surface roughness in layer boundaries explained some areas of weak backscatter, nonetheless it was shown that a suite of coincident observations, rather than a single technique in isolation, were required to adequately explain the variability of backscatter and the influence of snowpack properties upon it
- …