2,585 research outputs found
Comment on "Heavy element production in inhomogeneous big bang nucleosynthesis"
The work of Matsuura et al. [Phys. Rev. D 72, 123505 (2005);
astro-ph/0507439] claims that heavy nuclei could have been produced in a
combined p- and r-process in very high baryon density regions of an
inhomogeneous big bang. However, they do not account for observational
constraints and previous studies which show that such high baryon density
regions did not significantly contribute to big bang abundances.Comment: 2 pages, submitted to Phys. Rev. D on Feb 23, 200
The stochastic pump current and the non-adiabatic geometrical phase
We calculate a pump current in a classical two-state stochastic chemical
kinetics by means of the non-adiabatic geometrical phase interpretation. The
two-state system is attached to two particle reservoirs, and under a periodic
perturbation of the kinetic rates, it gives rise to a pump current between the
two-state system and the absorbing states. In order to calculate the pump
current, the Floquet theory for the non-adiabatic geometrical phase is extended
from a Hermitian case to a non-Hermitian case. The dependence of the pump
current on the frequency of the perturbative kinetic rates is explicitly
derived, and a stochastic resonance-like behavior is obtained.Comment: 11 page
Optimization in the design of a 12 gigahertz low cost ground receiving system for broadcast satellites. Volume 1: System design, performance, and cost analysis
The technical and economical feasibility of using the 12 GHz band for broadcasting from satellites were examined. Among the assigned frequency bands for broadcast satellites, the 12 GHz band system offers the most channels. It also has the least interference on and from the terrestrial communication links. The system design and analysis are carried out on the basis of a decision analysis model. Technical difficulties in achieving low-cost 12 GHz ground receivers are solved by making use of a die cast aluminum packaging, a hybrid integrated circuit mixer, a cavity stabilized Gunn oscillator and other state-of-the-art microwave technologies for the receiver front-end. A working model was designed and tested, which used frequency modulation. A final design for the 2.6 GHz system ground receiver is also presented. The cost of the ground-terminal was analyzed and minimized for a given figure-of-merit (a ratio of receiving antenna gain to receiver system noise temperature). The results were used to analyze the performance and cost of the whole satellite system
Optimization in the design of a 12 gigahertz low cost ground receiving system for broadcast satellites. Volume 2: Antenna system and interference
The antenna characteristics are analyzed of a low cost mass-producible ground station to be used in broadcast satellite systems. It is found that a prime focus antenna is sufficient for a low-cost but not a low noise system. For the antenna feed waveguide systems are the best choice for the 12 GHz band, while printed-element systems are recommended for the 2.6 GHz band. Zoned reflectors are analyzed and appear to be attractive from the standpoint of cost. However, these reflectors suffer a gain reduction of about one db and a possible increase in sidelobe levels. The off-axis gain of a non-auto-tracking station can be optimized by establishing a special illumination function at the reflector aperture. A step-feed tracking system is proposed to provide automatic procedures for searching for peak signal from a geostationary satellite. This system uses integrated circuitry and therefore results in cost saving under mass production. It is estimated that a complete step-track system would cost only $512 for a production quantity of 1000 units per year
- …